甘肅省天水市秦安縣二中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁
甘肅省天水市秦安縣二中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁
甘肅省天水市秦安縣二中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁
甘肅省天水市秦安縣二中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁
甘肅省天水市秦安縣二中2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省天水市秦安縣二中2025屆高三第三次模擬考試數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.2.已知函數(shù),若,則的取值范圍是()A. B. C. D.3.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.4.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立5.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.46.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)7.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.8.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612429.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.310.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.11.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.12.以,為直徑的圓的方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖象在處的切線斜率為,則______.14.曲線在點處的切線方程為__.15.已知實數(shù)滿約束條件,則的最大值為___________.16.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學(xué)期望.18.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設(shè)點是線段上的動點,當直線與直線所成的角最小時,求三棱錐的體積.19.(12分)隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性50100女性70100合計(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)?(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.21.(12分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的除法運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、B【解析】

對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.3、B【解析】

由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.4、C【解析】

A:否命題既否條件又否結(jié)論,故A錯.B:由正弦定理和邊角關(guān)系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎(chǔ)題.5、C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎(chǔ)題.6、C【解析】

根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.7、C【解析】

根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.8、C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。9、A【解析】

將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.10、D【解析】

根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計算能力,屬于中檔題.11、D【解析】

根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設(shè)直線OA為,設(shè)點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).12、A【解析】

設(shè)圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標準方程,建立方程組,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先對函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據(jù)曲線上在某點切線方程的斜率求參數(shù)的問題,屬于基礎(chǔ)題.14、【解析】

對函數(shù)求導(dǎo)后,代入切點的橫坐標得到切線斜率,然后根據(jù)直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎(chǔ)題.15、8【解析】

畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經(jīng)過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.16、【解析】

求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,

∴,

則,

又,即切點坐標為(1,0),

則函數(shù)在點(1,f(1))處的切線方程為,

即,

故答案為:.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)9060元【解析】

(1)根據(jù)古典概型概率公式和組合數(shù)的計算可得所求概率;(2)任選一天,設(shè)該天的經(jīng)濟損失為元,分別求出,,,進而求得數(shù)學(xué)期望,據(jù)此得出該企業(yè)一個月經(jīng)濟損失的數(shù)學(xué)期望.【詳解】解:(1)設(shè)為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則.(2)任選一天,設(shè)該天的經(jīng)濟損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個月的經(jīng)濟損失的數(shù)學(xué)期望為(元).【點睛】本題考查古典概型概率公式和組合數(shù)的計算及數(shù)學(xué)期望,屬于基礎(chǔ)題.18、(1)見解析;(2).【解析】

(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標系,則,,,,所以,,,設(shè),,則,所以,設(shè),則,所以當,即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計算量較大,解決此類問題最關(guān)鍵是準確寫出點的坐標,是一道中檔題.19、(Ⅰ)詳見解析;(Ⅱ)①;②數(shù)學(xué)期望為6,方差為2.4.【解析】

(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān).(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購的概率.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,由題意,由此能求出隨機變量的數(shù)學(xué)期望和方差.【詳解】解:(1)完成列聯(lián)表(單位:人):經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性5050100女性7030100合計12080200由列聯(lián)表,得:,∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān).(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,∴選取的3人中至少有2人經(jīng)常網(wǎng)購的概率為:.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購市民的概率為0.6,由題意,∴隨機變量的數(shù)學(xué)期望,方差D(X)=.【點睛】本題考查獨立檢驗的應(yīng)用,考查概率、離散型隨機變量的分布列、數(shù)學(xué)期望、方差的求法,考查古典概型、二項分布等基礎(chǔ)知識,考查運算求解能力,是中檔題.20、(1)64,65;(2);(3).【解析】

(1)根據(jù)頻率分布直方圖及其性質(zhì)可求出,平均數(shù),中位數(shù);(2)設(shè)“第1次抽取的測試得分低于80分”為事件,“第2次抽取的測試得分低于80分”為事件,由條件概率公式可求出;(3)從評定等級為“合格”和“不合格”的學(xué)生中隨機抽取10人進行座談,其中“不合格”的學(xué)生數(shù)為,“合格”的學(xué)生數(shù)為6;由題意可得,5,10,15,1,利用“超幾何分布”的計算公式即可得出概率,進而得出分布列與數(shù)學(xué)期望.【詳解】由題意知,樣本容量為,.(1)平均數(shù)為,設(shè)中位數(shù)為,因為,所以,則,解得.(2)由題意可知,分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論