版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省杭州求是高級中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.2.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.3.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則4.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個5.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限6.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直7.已知集合,集合,則A. B.或C. D.8.設(shè)全集U=R,集合,則()A. B. C. D.9.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.10.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預(yù)測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙11.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.12.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數(shù)等于__.14.已知是拋物線上一點,是圓關(guān)于直線對稱的曲線上任意一點,則的最小值為________.15.直線過圓的圓心,則的最小值是_____.16.如圖是一個算法的偽代碼,運行后輸出的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.18.(12分)已知矩陣,求矩陣的特征值及其相應(yīng)的特征向量.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點的坐標(biāo).20.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.21.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點,若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.22.(10分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當(dāng)時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當(dāng)時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.2、C【解析】
設(shè)M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關(guān)鍵點通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.3、C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個選項得到結(jié)果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當(dāng)垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.4、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.5、D【解析】
設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,在第四象限.故選:D.【點睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識,考查學(xué)生的基本計算能力,是一道容易題.6、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關(guān)系7、C【解析】
由可得,解得或,所以或,又,所以,故選C.8、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.9、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.10、A【解析】
利用逐一驗證的方法進行求解.【詳解】若甲預(yù)測正確,則乙、丙預(yù)測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預(yù)測正確,則丙預(yù)測也正確,不符合題意;若丙預(yù)測正確,則甲必預(yù)測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預(yù)測正確,不符合題意,故選A.【點睛】本題將數(shù)學(xué)知識與時政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識、邏輯推理能力的考查.11、D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.12、C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】
由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點睛】本題主要考查二項式定理的應(yīng)用,屬基礎(chǔ)題.14、【解析】
由題意求出圓的對稱圓的圓心坐標(biāo),求出對稱圓的圓坐標(biāo)到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關(guān)動點距離的最小值問題,涉及到的知識點有點關(guān)于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.15、【解析】
直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當(dāng)且僅當(dāng)m=n時取等號.∴則的最小值是4.故答案為:4.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程、“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.16、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、矩陣屬于特征值的一個特征向量為,矩陣屬于特征值的一個特征向量為【解析】
先由矩陣特征值的定義列出特征多項式,令解方程可得特征值,再由特征值列出方程組,即可求得相應(yīng)的特征向量.【詳解】由題意,矩陣的特征多項式為,令,解得,,將代入二元一次方程組,解得,所以矩陣屬于特征值的一個特征向量為;同理,矩陣屬于特征值的一個特征向量為v【點睛】本題主要考查了矩陣的特征值與特征向量的計算,其中解答中熟記矩陣的特征值和特征向量的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標(biāo),設(shè)直線的方程為,易知,可得點的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進而由三點共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點的坐標(biāo)為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標(biāo)為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計算求解能力,屬于難題.20、(1);.;(2)【解析】
(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關(guān)系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當(dāng)時,,則,當(dāng)時,,,由已知可得,且,∴的通項公式:.(2)設(shè),則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【點睛】本題考查通過遞推關(guān)系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.21、(1)見證明;(2)【解析】
(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專用型配電柜買賣雙方協(xié)議條款版
- 2024版專業(yè)咨詢服務(wù)協(xié)議書
- 2024服裝貨品空運出口協(xié)議
- 2024年食品原料供貨合同8篇
- 職業(yè)學(xué)院網(wǎng)站新媒體平臺審批備案登記表
- 專項運營維護服務(wù)協(xié)議范本一
- 福建省南平市武夷山第三中學(xué)高二地理聯(lián)考試題含解析
- 福建省南平市吳屯中學(xué)2020-2021學(xué)年高三英語上學(xué)期期末試卷含解析
- 2024年編:林業(yè)產(chǎn)品購銷協(xié)議
- 勞動節(jié)銷售提升策略
- 全套教學(xué)課件《工程倫理學(xué)》
- 當(dāng)代青年信仰研究報告
- 婦科術(shù)后病人飲食護理
- 腦梗塞后遺癥護理查房
- 2024至2030年中國豬肉脯行業(yè)市場發(fā)展現(xiàn)狀及潛力分析研究報告
- 安裝空調(diào)勞務(wù)合同協(xié)議書
- 中國普通食物營養(yǎng)成分表(修正版)
- 大學(xué)介紹清華大學(xué)宣傳
- 高速動車組轉(zhuǎn)向架關(guān)鍵結(jié)構(gòu)設(shè)計及分析
- 2024年導(dǎo)游服務(wù)技能大賽《導(dǎo)游綜合知識測試》題庫及答案
- 高中化學(xué)實驗開展情況的調(diào)查問卷教師版
評論
0/150
提交評論