2025屆新疆第二師華山中學高考數(shù)學二模試卷含解析_第1頁
2025屆新疆第二師華山中學高考數(shù)學二模試卷含解析_第2頁
2025屆新疆第二師華山中學高考數(shù)學二模試卷含解析_第3頁
2025屆新疆第二師華山中學高考數(shù)學二模試卷含解析_第4頁
2025屆新疆第二師華山中學高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆新疆第二師華山中學高考數(shù)學二模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.2.已知函數(shù),若關(guān)于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.83.是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是()A. B. C. D.4.設(是虛數(shù)單位),則()A. B.1 C.2 D.5.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.6.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.7.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,8.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.9.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.4010.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.11.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測將其區(qū)分開來,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件類產(chǎn)品或者檢測出3件類產(chǎn)品時,檢測結(jié)束,則第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為()A. B. C. D.12.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.14.《易經(jīng)》是中國傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.15.設為數(shù)列的前項和,若,則____16.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列是公差不為零的等差數(shù)列,其前項和為,,若,,成等比數(shù)列.(1)求及;(2)設,設數(shù)列的前項和,證明:.18.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)19.(12分)已知函數(shù)f(x)=x(1)討論fx(2)當x≥-1時,fx+a20.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數(shù)學期望;(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務費.21.(12分)已知函數(shù)(),是的導數(shù).(1)當時,令,為的導數(shù).證明:在區(qū)間存在唯一的極小值點;(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.22.(10分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.2、D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當時,,由于關(guān)于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數(shù)解當時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.3、C【解析】

求出點關(guān)于直線的對稱點的坐標,進而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應用,考查計算能力,屬于中等題.4、A【解析】

先利用復數(shù)代數(shù)形式的四則運算法則求出,即可根據(jù)復數(shù)的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復數(shù)代數(shù)形式的四則運算法則的應用,以及復數(shù)的模計算公式的應用,屬于容易題.5、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.6、B【解析】

作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規(guī)劃的應用,根據(jù)目標函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.7、A【解析】

設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.8、C【解析】

①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最小(為下底面面對角線的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.【點睛】本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.9、A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.10、D【解析】

根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.11、D【解析】

根據(jù)分步計數(shù)原理,由古典概型概率公式可得第一次檢測出類產(chǎn)品的概率,不放回情況下第二次檢測出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測出類產(chǎn)品的概率為;故第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為;故選:D.【點睛】本題考查了分步乘法計數(shù)原理的應用,古典概型概率計算公式的應用,屬于基礎題.12、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應用問題,是基礎題.14、【解析】

觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個,還有6個是1陰2陽和1陽2陰各3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰?!驹斀狻堪素灾嘘幘€和陽線的情況為3線全為陽線的一個,全為陰線的一個,1陰2陽的3個,1陽2陰的3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰?!鄰?個卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:。【點睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線和陽線的條數(shù),這樣才能正確地確定基本事件的個數(shù)。15、【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關(guān)系,還考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎題.16、【解析】

根據(jù)向量共線定理得A,B,C三點共線,再根據(jù)點斜式得結(jié)果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)證明見解析.【解析】

(1)根據(jù)題中條件求出等差數(shù)列的首項和公差,然后根據(jù)首項和公差即可求出數(shù)列的通項和前項和;(2)根據(jù)裂項求和求出,根據(jù)的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數(shù)列基本量的求解,裂項求和法,屬于基礎題.18、(1);(2)2個,證明見解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導數(shù)討論此函數(shù)零點的個數(shù).【詳解】(1)的定義域為,因為,1°當時,在上單調(diào)遞減,時,使得,與條件矛盾;2°當時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,當時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當時,,所以在上單調(diào)遞減,,即在上無實根;2°當時,,則在上單調(diào)遞遞增,又,所以在上有唯一實根,且滿足,①當時,在上單調(diào)遞減,此時在上無實根;②當時,在上單調(diào)遞增,,故在上有唯一實根.3°當時,由(1)知,在上單調(diào)遞增,所以,故,所以在上無實根.綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.【點睛】此題考查不等式恒成立問題、函數(shù)與方程的轉(zhuǎn)化思想,考查導數(shù)的運用,屬于較難題.19、(1)見解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調(diào)性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當x=-1時,0≤-1e+1恒成立.當x>-1時,a≤xe【詳解】解法一:(1)f①當a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調(diào)遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調(diào)遞增,在綜上:當a≤0時,f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增;當0<a<1e時,f(x)在(-∞,lna),自a=1e時,f(x)在當a>1e時,f(x)在(-∞,-1),(ln(2)因為xex-ax-a+1≥0當x=-1時,0≤-1當x>-1時,a≤x令g(x)=xex設h(x)=e因為h'(x)=e即hx=e又因為h0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當a≤0時,g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當0<a≤1時,令h(x)=e因為h'(x)=2ex+x又因為h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘極小值↗g==-e當a>1時,g(0)=-a+1<0,不滿足題意.綜上,a的取值范圍為-∞,1.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值、分類討論方法、方程與不等式的解法,考查了推理能力與計算能力,屬于難題.20、(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】

(1)將圖中甲公司員工A的所有數(shù)據(jù)相加,再除以總的天數(shù)10,即可求出甲公司員工A投遞快遞件數(shù)的平均數(shù).從中發(fā)現(xiàn)330出現(xiàn)的次數(shù)最多,故為眾數(shù);(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數(shù)學期望;(3)利用(1)(2)的結(jié)果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)為.眾數(shù)為330.(2)設乙公司員工1天的投遞件數(shù)為隨機變量,則當時,當時,當時,當時,當時,的分布列為20421922827

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論