![山西大學(xué)附屬中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第1頁](http://file4.renrendoc.com/view11/M01/3E/3F/wKhkGWdwQyuAdGrwAAG1IUck_4g273.jpg)
![山西大學(xué)附屬中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第2頁](http://file4.renrendoc.com/view11/M01/3E/3F/wKhkGWdwQyuAdGrwAAG1IUck_4g2732.jpg)
![山西大學(xué)附屬中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第3頁](http://file4.renrendoc.com/view11/M01/3E/3F/wKhkGWdwQyuAdGrwAAG1IUck_4g2733.jpg)
![山西大學(xué)附屬中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第4頁](http://file4.renrendoc.com/view11/M01/3E/3F/wKhkGWdwQyuAdGrwAAG1IUck_4g2734.jpg)
![山西大學(xué)附屬中學(xué)2025屆高考數(shù)學(xué)四模試卷含解析_第5頁](http://file4.renrendoc.com/view11/M01/3E/3F/wKhkGWdwQyuAdGrwAAG1IUck_4g2735.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西大學(xué)附屬中學(xué)2025屆高考數(shù)學(xué)四模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖為一個正四面體的側(cè)面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.2.已知向量,且,則m=()A.?8 B.?6C.6 D.83.已知為定義在上的偶函數(shù),當(dāng)時,,則()A. B. C. D.4.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.5.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.6.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.7.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關(guān)于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.48.函數(shù)與的圖象上存在關(guān)于直線對稱的點,則的取值范圍是()A. B. C. D.9.已知集合,,則集合子集的個數(shù)為()A. B. C. D.10.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.11.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)12.設(shè),滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項展開式中,含項的系數(shù)為__________.14.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.15.設(shè)、滿足約束條件,若的最小值是,則的值為__________.16.函數(shù)在的零點個數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數(shù)的值;(2)設(shè)線段的中點為,其中為坐標(biāo)原點,若,求的面積.18.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大??;(2)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.19.(12分)已知數(shù)列中,a1=1,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.20.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.21.(12分)已知函數(shù).當(dāng)時,求不等式的解集;,,求a的取值范圍.22.(10分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點為,當(dāng)變化時,點構(gòu)成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.2、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.3、D【解析】
判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.4、B【解析】
雙曲線的漸近線方程為,由題可知.設(shè)點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.5、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點睛】本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.6、A【解析】
設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.7、B【解析】
對函數(shù)化簡可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關(guān)于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點、對稱性,考查學(xué)生的計算求解能力與推理能力,屬于中檔題.8、C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當(dāng)時,;當(dāng)時,,故時,取得極大值,也即為最大值,當(dāng)趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運算求解等數(shù)學(xué)能力,屬于難題.9、B【解析】
首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數(shù)的計算公式,屬于基礎(chǔ)題.10、C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).11、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.12、C【解析】
首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
寫出二項展開式的通項,然后取的指數(shù)為求得的值,則項的系數(shù)可求得.【詳解】,由,可得.含項的系數(shù)為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎(chǔ)題.14、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可.【詳解】由題意得:目標(biāo)函數(shù)在點B取得最大值為7,在點A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.15、【解析】
畫出滿足條件的平面區(qū)域,求出交點的坐標(biāo),由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點.由得,顯然當(dāng)直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.16、【解析】
求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的值為或.(2)【解析】
(1)分類討論,當(dāng)時,線段與拋物線沒有公共點,設(shè)點在拋物線準(zhǔn)線上的射影為,當(dāng)三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得軸且設(shè),則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點,即時,設(shè)點在拋物線準(zhǔn)線上的射影為,則三點共線時,的最小值為,此時若線段與拋物線有公共點,即時,則三點共線時,的最小值為:,此時綜上,實數(shù)的值為或.因為,所以軸且設(shè),則,代入拋物線的方程解得于是,所以【點睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關(guān)系中的面積問題,屬于中檔題.18、(1)66.5(2)屬于【解析】
(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.19、(1)(2)【解析】
(1)項和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【點睛】本題考查了數(shù)列綜合問題,考查了項和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.20、(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進(jìn)而證明線面平行;(2)取中點為,以為坐標(biāo)原點建立直角坐標(biāo)系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結(jié),,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結(jié),,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.21、(1);(2).【解析】
(1)當(dāng)時,,①當(dāng)時,,令,即,解得,②當(dāng)時,,顯然成立,所以,③當(dāng)時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.22、(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當(dāng)時,恒成立,在上單調(diào)遞增.,,,存在滿足時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- .7市場部培訓(xùn)紫琪爾項目
- 2025年全球及中國無人機(jī)測量軟件行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國珍珠奶茶配料行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國電信行業(yè)CRM軟件行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國便攜式四合一氣體檢測儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國塑料輔助設(shè)備行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球機(jī)器人滾珠絲杠行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國一次性發(fā)熱暖袋行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國金屬箔電流傳感貼片電阻行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球貓咪吹風(fēng)機(jī)行業(yè)調(diào)研及趨勢分析報告
- 2024-2025學(xué)年廣東省深圳市南山區(qū)監(jiān)測數(shù)學(xué)三年級第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 廣東2024年廣東金融學(xué)院招聘專職輔導(dǎo)員9人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- DB31∕731-2020 船舶修正總噸單位產(chǎn)品能源消耗限額
- 2024年衛(wèi)生專業(yè)技術(shù)資格考試衛(wèi)生檢驗技術(shù)(初級(師)211)相關(guān)專業(yè)知識試題及答案指導(dǎo)
- 《手衛(wèi)生知識培訓(xùn)》培訓(xùn)課件
- 江蘇省南京鼓樓區(qū)2024年中考聯(lián)考英語試題含答案
- 兒科護(hù)理學(xué)試題及答案解析-神經(jīng)系統(tǒng)疾病患兒的護(hù)理(二)
- 15篇文章包含英語四級所有詞匯
- 王陽明心學(xué)完整版本
- (汽車制造論文)機(jī)器人在汽車制造中應(yīng)用
- 幼兒園手工教學(xué)中教師指導(dǎo)行為研究-以自貢市幼兒園為例
評論
0/150
提交評論