版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市寶山區(qū)行知中學(xué)2025屆高考數(shù)學(xué)二模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.32.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.3.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.5.若不等式在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),則實數(shù)的取值范圍是()A. B.C. D.6.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.7.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.8.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.9.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i10.已知集合,集合,那么等于()A. B. C. D.11.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.12.函數(shù)f(x)=的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.變量滿足約束條件,則目標(biāo)函數(shù)的最大值是____.14.已知f(x)為偶函數(shù),當(dāng)x≤0時,f(x)=e-x-1-x,則曲線y=f(x)15.函數(shù)在的零點個數(shù)為________.16.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.18.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.19.(12分)已知△ABC的兩個頂點A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標(biāo)原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.20.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.21.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.22.(10分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
建立空間直角坐標(biāo)系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運算求解能力,屬于中檔題.2、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;②當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;③當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.3、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當(dāng)時,顯然不成立;當(dāng)時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.4、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.5、C【解析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點,得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),結(jié)合圖象,可求出實數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因為,所以,或,因為時,,或時,,,其圖象如下:當(dāng)時,至多一個整數(shù)根;當(dāng)時,在內(nèi)的解集中僅有三個整數(shù),只需,,所以.故選:C.【點睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時考查數(shù)形結(jié)合思想和解題能力.6、C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.7、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.8、C【解析】
對此分段函數(shù)的第一部分進行求導(dǎo)分析可知,當(dāng)時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時,,顯然當(dāng)時有,,∴經(jīng)單調(diào)性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應(yīng)極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題9、D【解析】
兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點睛】的共軛復(fù)數(shù)為10、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.11、D【解析】
由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當(dāng)時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當(dāng)時,,所以是函數(shù)的一條對稱軸,故選:D【點睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.12、D【解析】
根據(jù)函數(shù)為非偶函數(shù)可排除兩個選項,再根據(jù)特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數(shù)圖象的對稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
分析:畫出可行域,平移直線,當(dāng)直線經(jīng)過時,可得有最大值.詳解:畫出束條件表示的可行性,如圖,由可得,可得,目標(biāo)函數(shù)變形為,平移直線,當(dāng)直線經(jīng)過時,可得有最大值,故答案為.點睛:本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的定點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.14、y=2x【解析】試題分析:當(dāng)x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當(dāng)x>0時,函數(shù)y=f(x),則當(dāng)x<0時,求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).15、【解析】
求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點,屬于基礎(chǔ)題.16、1【解析】
根據(jù)題意,由平均數(shù)公式可得,解得的值,進而由方差公式計算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數(shù)、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)設(shè)直線PA,PB的傾斜角分別為,斜率為,可得.則,,利用均值不等式,即得解.【詳解】(1)因為關(guān)于軸對稱,所以必在橢圓上,∴不在橢圓上∴,,即.(2)設(shè)橢圓上的點(),設(shè)直線PA,PB的傾斜角分別為,斜率為又∴.,,(不妨設(shè)).故當(dāng)且僅當(dāng),即時等號成立【點睛】本題考查了直線和橢圓綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.18、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點睛】本題考查函數(shù)的局部對稱點的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運算能力.19、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,故四邊形為平行四邊形.當(dāng)直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當(dāng)直線l的斜率存在時,設(shè)直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點O到直線MN的距離d,由,得xD,yD,∵點D在曲線C上,所以將D點坐標(biāo)代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.【點睛】本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運算求解能力,屬于中檔題.20、(1).(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版果林租賃與農(nóng)村金融服務(wù)合作合同范本3篇
- 2025年度環(huán)保產(chǎn)業(yè)融資服務(wù)合同范本(含排放)3篇
- 二零二五年度房地產(chǎn)廣告發(fā)布合同:廣告投放合作協(xié)議3篇
- 2025版西瓜品牌授權(quán)及品牌管理合同3篇
- 二零二五年度戶口遷移安置補償協(xié)議3篇
- 二零二五年度文化旅游景區(qū)開店合作合同3篇
- 二零二五年度國際房產(chǎn)二手房買賣合同范本2篇
- 2025年度社區(qū)便利店租賃合同模板(含加盟服務(wù)條款)3篇
- 二零二五年度新材料合伙人退伙技術(shù)合作與退伙協(xié)議3篇
- 二零二五年度建筑垃圾資源化利用項目招投標(biāo)合同3篇
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2025年中央歌劇院畢業(yè)生公開招聘11人歷年高頻重點提升(共500題)附帶答案詳解
- 北京市高校課件 開天辟地的大事變 中國近代史綱要 教學(xué)課件
- 監(jiān)事會年度工作計劃
- 2024中國近海生態(tài)分區(qū)
- 山東省濟南市2023-2024學(xué)年高一上學(xué)期1月期末考試化學(xué)試題(解析版)
- 北師大版五年級數(shù)學(xué)下冊第3單元第1課時分數(shù)乘法(一)課件
- 2024-2030年中國汽車保險杠行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 智研咨詢發(fā)布:中國種豬行業(yè)市場現(xiàn)狀、發(fā)展概況、未來前景分析報告
- 六年級上冊分數(shù)四則混合運算100題及答案
- 2024年信息系統(tǒng)項目管理師(綜合知識、案例分析、論文)合卷軟件資格考試(高級)試題與參考答案
評論
0/150
提交評論