四川水利職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
四川水利職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
四川水利職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
四川水利職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
四川水利職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)四川水利職業(yè)技術(shù)學(xué)院

《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)要使用GAN生成逼真的藝術(shù)圖像,以下關(guān)于GAN訓(xùn)練過程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.生成器試圖生成逼真的圖像來欺騙判別器,判別器則努力區(qū)分真實(shí)圖像和生成的圖像B.訓(xùn)練過程中,生成器和判別器的性能會(huì)交替提升,直到達(dá)到平衡C.一旦GAN訓(xùn)練完成,生成器就能夠獨(dú)立生成高質(zhì)量的圖像,無需判別器的參與D.調(diào)整生成器和判別器的網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以影響生成圖像的質(zhì)量和多樣性2、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用3、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率4、在人工智能的發(fā)展中,倫理原則和規(guī)范的制定至關(guān)重要。以下關(guān)于人工智能倫理原則的敘述,不正確的是()A.應(yīng)遵循公平、公正、透明和可解釋的原則,確保人工智能系統(tǒng)的決策不帶有偏見B.要保障人類的安全和福祉,避免人工智能對(duì)人類造成潛在的危害C.知識(shí)產(chǎn)權(quán)和隱私保護(hù)在人工智能倫理中不重要,可以忽略D.鼓勵(lì)公眾參與和監(jiān)督人工智能的發(fā)展,促進(jìn)社會(huì)對(duì)人工智能的信任5、在人工智能的發(fā)展過程中,倫理和社會(huì)問題日益受到關(guān)注。以下關(guān)于人工智能倫理問題的描述,不正確的是()A.人工智能可能導(dǎo)致就業(yè)結(jié)構(gòu)的變化,一些工作可能被自動(dòng)化取代,從而引發(fā)社會(huì)就業(yè)問題B.人工智能在決策過程中可能存在偏見和不公平,例如在信用評(píng)估、招聘等領(lǐng)域C.隨著人工智能技術(shù)的發(fā)展,個(gè)人隱私保護(hù)面臨更大的挑戰(zhàn),因?yàn)榇罅康臄?shù)據(jù)被收集和分析D.人工智能倫理問題不重要,技術(shù)的發(fā)展應(yīng)該優(yōu)先于倫理和社會(huì)問題的考慮6、在人工智能的倫理原則中,公平性是一個(gè)重要的考量因素。假設(shè)我們要開發(fā)一個(gè)用于招聘的人工智能系統(tǒng),以下關(guān)于確保公平性的方法,哪一項(xiàng)是不正確的?()A.對(duì)數(shù)據(jù)進(jìn)行預(yù)處理,消除潛在的偏差B.透明公開算法的工作原理和決策依據(jù)C.不考慮候選人的背景信息,只根據(jù)能力評(píng)估D.完全依賴人工智能系統(tǒng)的決策,不進(jìn)行人工干預(yù)7、情感計(jì)算是人工智能的一個(gè)新興領(lǐng)域,旨在讓計(jì)算機(jī)理解和處理人類的情感。假設(shè)要開發(fā)一個(gè)能夠識(shí)別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計(jì)算的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計(jì)算的應(yīng)用可以包括心理咨詢、客戶服務(wù)等領(lǐng)域C.目前的情感計(jì)算技術(shù)已經(jīng)能夠準(zhǔn)確無誤地識(shí)別和理解所有復(fù)雜的人類情感D.情感模型的訓(xùn)練需要大量標(biāo)注了情感標(biāo)簽的數(shù)據(jù)8、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計(jì)算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會(huì)導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計(jì)算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對(duì)于大型復(fù)雜模型效果不佳D.這些技術(shù)對(duì)于在資源受限的設(shè)備上部署人工智能模型具有重要意義9、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本和音頻。假設(shè)要開發(fā)一個(gè)能夠同時(shí)理解圖像和文本內(nèi)容的系統(tǒng),以下哪個(gè)挑戰(zhàn)是最突出的?()A.數(shù)據(jù)的標(biāo)注和對(duì)齊B.模型的訓(xùn)練效率C.不同模態(tài)數(shù)據(jù)的特征提取D.模型的可擴(kuò)展性10、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來衡量模型的性能。假設(shè)評(píng)估一個(gè)分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無需考慮其他指標(biāo)11、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時(shí)實(shí)現(xiàn)模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要聯(lián)合訓(xùn)練一個(gè)人工智能模型,同時(shí)保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機(jī)構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險(xiǎn)C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型,對(duì)于大規(guī)模和復(fù)雜的任務(wù)不適用12、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)自動(dòng)進(jìn)行邏輯推理和問題求解。以下關(guān)于自動(dòng)推理的說法,不正確的是()A.自動(dòng)推理可以應(yīng)用于定理證明、規(guī)劃和診斷等領(lǐng)域B.基于規(guī)則的推理和基于模型的推理是自動(dòng)推理的常見方法C.自動(dòng)推理系統(tǒng)能夠處理所有復(fù)雜的邏輯問題,無需人類干預(yù)D.不確定性推理和非單調(diào)推理是自動(dòng)推理中的難點(diǎn)和研究熱點(diǎn)13、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個(gè)能夠識(shí)別水果種類的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性14、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個(gè)多層神經(jīng)網(wǎng)絡(luò)來預(yù)測(cè)股票價(jià)格的走勢(shì)。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過多的噪聲,會(huì)產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對(duì)新的數(shù)據(jù)預(yù)測(cè)不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜15、強(qiáng)化學(xué)習(xí)是人工智能中的一個(gè)重要領(lǐng)域,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)機(jī)器人需要在一個(gè)充滿障礙物的房間里找到通往目標(biāo)位置的路徑,同時(shí)避免碰撞。在這種情況下,以下關(guān)于強(qiáng)化學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.智能體通過隨機(jī)嘗試不同的動(dòng)作來學(xué)習(xí)最優(yōu)策略B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)學(xué)習(xí)效果沒有太大影響C.強(qiáng)化學(xué)習(xí)不需要考慮環(huán)境的動(dòng)態(tài)變化D.一旦訓(xùn)練完成,智能體在新的環(huán)境中無需重新學(xué)習(xí)就能表現(xiàn)良好16、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。假設(shè)一個(gè)城市計(jì)劃廣泛部署具有人臉識(shí)別功能的監(jiān)控系統(tǒng),以下關(guān)于人工智能倫理的描述,哪一項(xiàng)是不正確的?()A.需要考慮個(gè)人隱私保護(hù),確保人臉識(shí)別數(shù)據(jù)的安全存儲(chǔ)和使用B.應(yīng)該評(píng)估該系統(tǒng)可能帶來的歧視和不公平待遇等潛在風(fēng)險(xiǎn)C.只要該系統(tǒng)能夠提高城市的安全性,就無需考慮倫理和社會(huì)影響D.公眾應(yīng)該參與到關(guān)于人工智能應(yīng)用的決策過程中,表達(dá)自己的意見和關(guān)切17、人工智能中的遷移學(xué)習(xí)方法可以提高模型的泛化能力。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于特定領(lǐng)域的圖像識(shí)別任務(wù),以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.可以將預(yù)訓(xùn)練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進(jìn)行微調(diào)B.能夠利用已有的知識(shí)和特征,減少在新任務(wù)上的數(shù)據(jù)標(biāo)注和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)在任何情況下都能顯著提高新任務(wù)的模型性能D.需要根據(jù)新任務(wù)的特點(diǎn)選擇合適的預(yù)訓(xùn)練模型和遷移策略18、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問題19、當(dāng)利用人工智能進(jìn)行語音合成,使合成的語音聽起來更加自然和富有情感,以下哪種方法可能是重點(diǎn)研究和改進(jìn)的方向?()A.改進(jìn)聲學(xué)模型B.優(yōu)化韻律模型C.提升文本分析精度D.以上都是20、在人工智能的對(duì)話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對(duì)話信息生成連貫且有針對(duì)性的回復(fù)。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當(dāng)前輸入的文本,不考慮歷史信息C.對(duì)上下文信息進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析D.隨機(jī)生成回復(fù),不依賴上下文21、假設(shè)要開發(fā)一個(gè)能夠輔助醫(yī)生進(jìn)行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗(yàn)報(bào)告等。在這個(gè)過程中,以下哪個(gè)環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性22、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測(cè)方面有廣泛應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠檢測(cè)產(chǎn)品缺陷的系統(tǒng),需要考慮光照、拍攝角度等因素對(duì)圖像的影響。以下關(guān)于解決這些影響的方法,哪一項(xiàng)是不正確的?()A.使用多光源和多角度拍攝,獲取更全面的產(chǎn)品圖像B.對(duì)圖像進(jìn)行預(yù)處理,如歸一化和標(biāo)準(zhǔn)化,減少光照和角度的影響C.忽略光照和角度的變化,依靠模型的自適應(yīng)能力D.建立光照和角度的模型,對(duì)圖像進(jìn)行校正23、深度學(xué)習(xí)作為一種強(qiáng)大的人工智能技術(shù),在圖像識(shí)別領(lǐng)域取得了顯著成果。假設(shè)要開發(fā)一個(gè)能夠識(shí)別各種動(dòng)物的圖像識(shí)別系統(tǒng),以下關(guān)于深度學(xué)習(xí)在該任務(wù)中的描述,哪一項(xiàng)是不正確的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)常用于圖像特征提取和分類,能有效識(shí)別動(dòng)物圖像B.深度神經(jīng)網(wǎng)絡(luò)需要大量的標(biāo)注圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.通過調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以優(yōu)化圖像識(shí)別模型的性能D.深度學(xué)習(xí)模型一旦訓(xùn)練完成,就無需再進(jìn)行優(yōu)化和改進(jìn),能夠始終保持高精度24、假設(shè)在一個(gè)智能工廠的質(zhì)量檢測(cè)環(huán)節(jié),需要利用人工智能技術(shù)自動(dòng)檢測(cè)產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會(huì)被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)C.基于特征工程的分類模型D.以上都是25、在人工智能的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的腫瘤區(qū)域準(zhǔn)確分割出來,以下關(guān)于選擇分割算法的考慮,哪一項(xiàng)是最關(guān)鍵的?()A.算法的計(jì)算復(fù)雜度,以確保能夠快速處理大量圖像B.算法在其他領(lǐng)域的應(yīng)用效果,而不是針對(duì)醫(yī)學(xué)圖像的特定性能C.算法是否能夠利用多模態(tài)的醫(yī)學(xué)圖像數(shù)據(jù),如CT、MRI等D.算法是否具有漂亮的可視化效果,而不是分割的準(zhǔn)確性二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述人工智能在智能質(zhì)量檢測(cè)模型訓(xùn)練中的技術(shù)。2、(本題5分)解釋人工智能在智能市場(chǎng)需求預(yù)測(cè)中的方法。3、(本題5分)簡(jiǎn)述人工智能在氣象預(yù)報(bào)中的進(jìn)展。4、(本題5分)簡(jiǎn)述人工智能在通信領(lǐng)域的創(chuàng)新。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)利用人工智能進(jìn)行民俗節(jié)日活動(dòng)安排優(yōu)化的案例,分析其優(yōu)化效果和民眾滿意度。2、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能圖書分類和推薦系統(tǒng),探討其如何提高圖書館管理效率和讀者體驗(yàn)。3、(本題5分)分析一個(gè)基于人工智能的電影票房預(yù)測(cè)模型,討論其影響因素和準(zhǔn)確性。4、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能書法作品消費(fèi)者評(píng)價(jià)分析系統(tǒng),探討其如何分析消費(fèi)者對(duì)書法作品的評(píng)價(jià)。5、(本題5分)研究一個(gè)利用人工智能進(jìn)行傳統(tǒng)建筑風(fēng)格融合創(chuàng)新的案

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論