江西省宜春市四校聯(lián)考2025屆高考數(shù)學(xué)五模試卷含解析_第1頁
江西省宜春市四校聯(lián)考2025屆高考數(shù)學(xué)五模試卷含解析_第2頁
江西省宜春市四校聯(lián)考2025屆高考數(shù)學(xué)五模試卷含解析_第3頁
江西省宜春市四校聯(lián)考2025屆高考數(shù)學(xué)五模試卷含解析_第4頁
江西省宜春市四校聯(lián)考2025屆高考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省宜春市四校聯(lián)考2025屆高考數(shù)學(xué)五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.2.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.下列不等式正確的是()A. B.C. D.4.已知集合,,則A. B.C. D.5.已知實數(shù),則下列說法正確的是()A. B.C. D.6.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.257.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.8.函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點對稱,,則的值為()A.0 B.2 C.4 D.19.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關(guān)于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定10.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標準中規(guī)定的數(shù)學(xué)六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運算最強11.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.0112.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學(xué)在這次活動中答對的題數(shù)分別是,則這五位同學(xué)答對題數(shù)的方差是____________.14.若函數(shù),則__________;__________.15.已知數(shù)列的前項滿足,則______.16.已知向量,,且,則實數(shù)m的值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.18.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.20.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.22.(10分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.2、D【解析】

根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.3、D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、D【解析】

因為,,所以,,故選D.5、C【解析】

利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.6、D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應(yīng)用,考查求前n項和的最值問題,同時還考查了余弦定理的應(yīng)用.7、D【解析】

設(shè),利用余弦定理,結(jié)合雙曲線的定義進行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運算能力.8、C【解析】

根據(jù)函數(shù)的圖象關(guān)于點對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因為函數(shù)的圖象關(guān)于點對稱,所以的圖象關(guān)于原點對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.9、A【解析】

利用的坐標為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設(shè)直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題10、D【解析】

根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學(xué)運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數(shù)表法,考查學(xué)習能力和運用能力.12、B【解析】

作出不等式組對應(yīng)的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

由這五位同學(xué)答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.14、01【解析】

根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點睛】本題考查了分段函數(shù)求值的簡單應(yīng)用,屬于基礎(chǔ)題.15、【解析】

由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時要注意的求解方法.【詳解】∵①,∴時,②,①-②得,∴,又,∴().故答案為:.【點睛】本題考查求數(shù)列通項公式,由已知條件.類比已知求的解題方法求解.16、1【解析】

根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標運算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌18、(1)證明見解析;(2).【解析】

(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當時,,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當時,.又,∴,∴,∴.【點睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題19、(1),(2)存在,【解析】

(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉(zhuǎn)化為極坐標方程.根據(jù)極坐標和直角坐標轉(zhuǎn)化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.【點睛】本小題主要考查坐標變換,考查直線和圓的位置關(guān)系,考查極坐標方程和直角坐標方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.20、(1)見解析;(2).【解析】

(1)取的中點,連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點,連接、,、分別為、的中點,則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點到平面的距離等于點到平面的距離,在平面內(nèi)過點作于點,平面,平面,,,,平面,即就是到平面的距離,也就是點到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是中檔題.21、(1)證明見解析;(2).【解析】

(1)證明,得到平面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論