江蘇省連云港等四市2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
江蘇省連云港等四市2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
江蘇省連云港等四市2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
江蘇省連云港等四市2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
江蘇省連云港等四市2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省連云港等四市2025屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列不等式正確的是()A. B.C. D.2.已知滿足,則的取值范圍為()A. B. C. D.3.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:①對(duì)滿足題意的任意的的位置,;②對(duì)滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立4.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,5.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或6.已知角的終邊經(jīng)過點(diǎn),則的值是A.1或 B.或 C.1或 D.或7.若集合,,則()A. B. C. D.8.已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則()A. B. C. D.9.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.10.已知數(shù)列中,,(),則等于()A. B. C. D.211.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行12.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對(duì)今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長(zhǎng)為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.14.已知,若,則a的取值范圍是______.15.過點(diǎn),且圓心在直線上的圓的半徑為__________.16.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長(zhǎng)的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(Ⅰ)當(dāng)時(shí),解不等式;(Ⅱ)若的最小值為1,求的最小值.18.(12分)已知數(shù)列中,a1=1,其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.19.(12分)已知直線:與拋物線切于點(diǎn),直線:過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.20.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)21.(12分)某市計(jì)劃在一片空地上建一個(gè)集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個(gè)購物廣場(chǎng)的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場(chǎng)、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.22.(10分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、C【解析】

設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點(diǎn)的直線平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過點(diǎn)時(shí),取正值中的最小值,,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對(duì)于直線斜率要注意斜率不存在的直線是否存在.3、A【解析】

作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.4、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點(diǎn)時(shí),函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.5、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.6、B【解析】

根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.7、B【解析】

根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進(jìn)而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點(diǎn)睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補(bǔ)集關(guān)系的應(yīng)用,屬于中檔題.8、A【解析】

畫出函數(shù)的圖像,函數(shù)對(duì)稱軸方程為,由圖可得與關(guān)于對(duì)稱,即得解.【詳解】函數(shù)的圖像如圖,對(duì)稱軸方程為,,又,由圖可得與關(guān)于對(duì)稱,故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、D【解析】

設(shè),則,小正六邊形的邊長(zhǎng)為,利用余弦定理可得大正六邊形的邊長(zhǎng)為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長(zhǎng)為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長(zhǎng)為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、A【解析】

分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

,

故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.11、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點(diǎn)睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.12、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.14、【解析】

函數(shù)等價(jià)為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價(jià)為,且時(shí),遞增,時(shí),遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的單調(diào)性的判斷和運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.15、【解析】

根據(jù)弦的垂直平分線經(jīng)過圓心,結(jié)合圓心所在直線方程,即可求得圓心坐標(biāo).由兩點(diǎn)間距離公式,即可得半徑.【詳解】因?yàn)閳A經(jīng)過點(diǎn)則直線的斜率為所以與直線垂直的方程斜率為點(diǎn)的中點(diǎn)坐標(biāo)為所以由點(diǎn)斜式可得直線垂直平分線的方程為,化簡(jiǎn)可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設(shè)圓心所以圓心滿足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點(diǎn)睛】本題考查了直線垂直時(shí)的斜率關(guān)系,直線與直線交點(diǎn)的求法,直線與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.16、【解析】

作A關(guān)于平面α和β的對(duì)稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱性三角形ADC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線時(shí)長(zhǎng)度最短,結(jié)合對(duì)稱性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對(duì)稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱性三角形ABC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線時(shí),周長(zhǎng)最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點(diǎn)睛】此題考查求空間三角形邊長(zhǎng)的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對(duì)稱關(guān)系,結(jié)合解三角形知識(shí)求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)當(dāng)時(shí),令,作出的圖像,結(jié)合圖像即可求解;(Ⅱ)結(jié)合絕對(duì)值三角不等式可得,再由“1”的妙用可拼湊為,結(jié)合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點(diǎn)橫坐標(biāo)為2,由對(duì)稱性知,點(diǎn)橫坐標(biāo)為﹣2,因此不等式的解集為.(Ⅱ)..取等號(hào)的條件為,即,聯(lián)立得因此的最小值為.【點(diǎn)睛】本題考查絕對(duì)值不等式、基本不等式,屬于中檔題18、(1)(2)【解析】

(1)項(xiàng)和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【點(diǎn)睛】本題考查了數(shù)列綜合問題,考查了項(xiàng)和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識(shí)點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.19、(1),(1,2);(2)存在,【解析】

(1)由直線恒過點(diǎn)點(diǎn)及拋物線C上的點(diǎn)到點(diǎn)Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點(diǎn)的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實(shí)數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點(diǎn)Q的坐標(biāo)為拋物線的焦點(diǎn)坐標(biāo),由拋物線C上的點(diǎn)到點(diǎn)Q的距離與到其焦點(diǎn)F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因?yàn)橹本€與拋物線C相切,所以,解得,此時(shí),所以點(diǎn)P坐標(biāo)為(1,2)(2)設(shè)存在滿足條件的實(shí)數(shù),點(diǎn),聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實(shí)數(shù)=滿足條件.【點(diǎn)睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類題目,通常聯(lián)立直線方程與拋物線方程,應(yīng)用一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解,此類問題易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解,能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等.20、(1);(2)證明見解析.【解析】

(1)求出函數(shù)的定義域?yàn)?,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求得實(shí)數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域?yàn)?,?當(dāng)時(shí),對(duì)任意的,,此時(shí)函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時(shí),令,得.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實(shí)數(shù)的取值范圍是;(2)當(dāng)時(shí),,定義域?yàn)?,,?dāng)時(shí),;當(dāng)時(shí),.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個(gè)零點(diǎn)、且,,,構(gòu)造函數(shù),其中,,令,,當(dāng)時(shí),,所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,,,即,即,,且,而函數(shù)在上為減函數(shù),所以,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的最值求參數(shù),同時(shí)也考查了利用導(dǎo)數(shù)證明函數(shù)不等式,利用所證不等式的結(jié)構(gòu)構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于難題.21、(1),最大值公頃;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的邊長(zhǎng)BC,進(jìn)而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達(dá)式求出,?!驹斀狻浚?)由余弦定理得,,所以,,同理可得又,所以,故在區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論