新人教版數(shù)學(xué)八年級上冊教案(全冊版)+數(shù)學(xué)教學(xué)計劃大全_第1頁
新人教版數(shù)學(xué)八年級上冊教案(全冊版)+數(shù)學(xué)教學(xué)計劃大全_第2頁
新人教版數(shù)學(xué)八年級上冊教案(全冊版)+數(shù)學(xué)教學(xué)計劃大全_第3頁
新人教版數(shù)學(xué)八年級上冊教案(全冊版)+數(shù)學(xué)教學(xué)計劃大全_第4頁
新人教版數(shù)學(xué)八年級上冊教案(全冊版)+數(shù)學(xué)教學(xué)計劃大全_第5頁
已閱讀5頁,還剩181頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新人教版數(shù)學(xué)八年級

上冊教案(全冊整理版)+數(shù)學(xué)教學(xué)計劃大全

新人教版八年級數(shù)學(xué)上冊教學(xué)設(shè)計(全冊)

第11章三角形

教材內(nèi)容

本章主要內(nèi)容有三角形的有關(guān)線段、角,多邊形及內(nèi)角和,鑲嵌等。

三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關(guān)的角有內(nèi)角、外角。

教材通過實驗讓學(xué)生了解三角形的穩(wěn)定性,在知道三角形的內(nèi)角和等于180°的基礎(chǔ)上,進(jìn)

行推理論證,從而得出三角形外角的性質(zhì)。接著由推廣三角形的有關(guān)概念,介紹了多邊形的

有關(guān)概念,利用三角形的有關(guān)性質(zhì)研究了多邊形的內(nèi)角和、外角和公式。這些知識加深了學(xué)

生對三角形的認(rèn)識,既是學(xué)習(xí)特殊三角形的基礎(chǔ),也是研究其它圖形的基礎(chǔ)。最后結(jié)合實例

研究了鑲嵌的有關(guān)問題,體現(xiàn)了多邊形內(nèi)角和公式在實際生活中的應(yīng)用.

教學(xué)目標(biāo)

〔知識與技能〕

1、理解三角形及有關(guān)概念,會畫任意三角形的高、中線、角平分線:2、了解三角形的

穩(wěn)定性,理解三角形兩邊的和大于第三邊,會根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形;

3、會證明三角形內(nèi)角和等于180°,了解三角形外角的性質(zhì)。4、了解多邊形的有關(guān)概念,會

運(yùn)用多邊形的內(nèi)角和與外角和公式解決問題。5、理解平面鑲嵌,知道任意一個三角形、四

邊形或正六邊形可以鑲嵌平面,并能運(yùn)用它們進(jìn)行簡單的平面鑲嵌設(shè)計。

〔過程與方法〕

1、在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)

學(xué)推理的習(xí)慣:2、在靈活運(yùn)用知識解決有關(guān)問題的過程中,體驗并掌握探索、歸納圖形性

質(zhì)的推理方法,進(jìn)一步培說理和進(jìn)行簡單推理的能力。

〔情感、態(tài)度與價值觀)

1、體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心;2、會應(yīng)用數(shù)學(xué)知識解決

一些簡單的實際問題,增強(qiáng)應(yīng)用意識;3、使學(xué)生進(jìn)一步形成數(shù)學(xué)來源于實踐,反過來又服

務(wù)于實踐的辯證唯物主義觀點。

重點難點

三角形三邊關(guān)系、內(nèi)角和,多邊形的外角和與內(nèi)角和公式,鑲嵌是重點;三角形內(nèi)角和

等于180°的證明,根據(jù)三條線段的長度判斷它們能否構(gòu)成三角形及簡單的平面鑲嵌設(shè)計是

難點。

課時分配

11.1與三角形有關(guān)的線段..............................2課時

11.2與三角形有關(guān)的角................................2課時

11.3多邊形及其內(nèi)角和................................2課時

本章小結(jié).............................................2課時

11.1.1三角形的邊

[教學(xué)目標(biāo)]

〔知識與技能〕

1了解三角形的意義,認(rèn)識三角形的邊、內(nèi)角、頂點,能用符號語言表示三角形;

2理解三角形三邊不等的關(guān)系,會判斷三條線段能否構(gòu)成一個三角形,并能運(yùn)用它解決

有關(guān)的問題.

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣;

〔情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

[重點難點]三角形的有關(guān)概念和符號表示,三角形三邊間的不等關(guān)系是重點:用三角

形三邊不等關(guān)系判定三條線段可否組成三角形是難點。

[教學(xué)過程]

一、情景導(dǎo)入

三角形是一種最常見的幾何圖形,[投影1-6]如古埃及金字塔,香港中銀大廈,交通

標(biāo)志,等等,處處都有三角形的形象。

那么什么叫做三角形呢?

二、三角形及有關(guān)概念

不在一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。

注意:三條線段必須①不在一條直線上,②首尾順次相接。

組成三角形的線段叫做三角形的邊,相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱角,

相鄰兩邊的公共端點是三角形的頂點。

三角形ABC用符號表示為△ABC。三角形ABC的頂點C所對的邊AB可用c表示,頂點B

所對的邊AC可用b表示,頂點A所對的邊BC可用a表示.

三、三角形三邊的不等關(guān)系

探究:[投影7]任意畫一個AABC,假設(shè)有一只小蟲要從B點出發(fā),沿三角形的邊爬到C,

它有幾種路線可以選擇?各條路線的長一樣嗎?為什么?

有兩條路線:(1)從B^C,(2)從B^A)C:不一樣,AB+AOBC①;囚為兩點之間

線段最短。

同樣地有AC+BOAB②

AB+BOAC③

由式子①②③我們可以知道什么?

三角形的任意兩邊之和大于第三邊.

四、三角形的分類

我們知道,三角形按角可分為銳角三角形、鈍角三角形、直角三角形,我們把銳角三

角形、鈍角三角形統(tǒng)稱為斜三角形。

按角分類:

三角形f直角三角形

1斜三角形(銳角三角形

t鈍角三角形

那么三角形按邊如何進(jìn)行分類呢?請你按“有幾條邊相等”將三角形分類。

三邊都相等的三角形叫做等邊三角形:

有兩條邊相等的三角形叫做等腰三角形;

三邊都不相等的三角形叫做不等邊三角形。

顯然,等邊三角形是特殊的等腰三角形。

按邊分類:

三角形r不等邊三角形

t等腰三角形]底和腰不等的等腰三角形

1等邊三角形

五、例題

例用一條長為18cm的細(xì)繩圍成一個等腰三角形。(1)如果腰長是底邊的2倍,那么

各邊的長是多少?(2)能圍成有一邊長為4cm的等腰三角形嗎?為什么?

分析:(1)等腰三角形三邊的長是多少?若設(shè)底邊長為xcm,則摟長是多少?(2)“邊

長為4cm”是什么意思?

解;(1)設(shè)底邊長為xcm,則腰長2xcmo

x+2x+2x=18

解得x=3.6

所以,三邊長分別為3.6cm,7.2cm,7.2cm.

(2)如果長為4cm的邊為底邊,設(shè)腰長為xcm,則

4+2x=18

解得x=7

如果長為4cm的邊為腰,設(shè)底邊長為xcm,則

2X4+x=18

解得x=10

因為4+4V10,出現(xiàn)兩邊的和小于第三邊的情況,所以不能圍成腰長是4cm的等腰

三角形。

由以上討論可知,可以圍成底邊長是4cm的等腰三角形。

五、課堂練習(xí)

課本4直練習(xí)1、2題。

六、課堂小結(jié)

1、三角形及有關(guān)概念;

2、三角形的分類;

3、三角形三邊的不等關(guān)系及應(yīng)用。

作業(yè):

課本8M12、6;

教后記

11.1.2三角形的高、中線與角平分

(教學(xué)目標(biāo))

〔知識與技能〕

1、經(jīng)歷畫圖的過程,認(rèn)識三角形的高、中線與角平分線;

2、會畫三角形的高、中線與角平分線;3、了解三角形的三條高所在的直線,三條中線,

三條角平分線分別交于一點.

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣

(:情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

(重點難點)三角形的高、中線與角平分線是重點;三角形的角平分線與角的平分線的

區(qū)別,畫鈍角三角形的高是難點.

(教學(xué)過程)

一、導(dǎo)入新課

我們已經(jīng)知道什么是三角形,也學(xué)過三角形的高。三角形的主要線段除高外,還有中

線和角平分線值得我們研究。

二、三角形的高

請你在圖中畫出4ABC的一條高并說說你畫法。

從4ABC的頂點A向它所對的邊BC所在的直線畫垂線,垂足為D,所得線段AD叫做

△ABC的邊BC上的高,表示為AD_LBC于點D。

注意:高與垂線不同,高是線段,垂線是直線。

請你再畫出這個三角形AB、AC邊上的高,看看有什么發(fā)現(xiàn)?

三角形的三條高相交于一點。

如果AABC是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?

現(xiàn)在我們來畫鈍角三角形三邊上的高,如圖。

顯然,上面的結(jié)論成立。

請你畫一個直角三角形,再畫出它三邊上的高。

上面的結(jié)論還成立。

三、三角形的中線

如圖,我們把連結(jié)4ABC的頂點A和它的對邊BC的中點D,所得線段AD叫做4ABC

的邊BC上的中線,表示為BD-DC或BD-DC=1/2BC或2BD-2DC-BC.

請你在圖中畫出4ABC的另兩條邊上的中線,看看有什么發(fā)現(xiàn)?

三角的三條中線相交于一點。

如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?清畫圖回答。

上面的結(jié)論還成立。

四、三角形的角平分線

如圖,畫NA的平分線AD,交NA所對的邊BC于點D,所得線段AD叫做aABC的角

平分線,表示為NBAD=NCAD或NBAD=NCAD=1/2/BAC或2ZBAD=2ZCAD=ZBAC1,

思考:三角形的角平分線與角的平分線是一樣的嗎?

三角形的角平分線是線段,而角的平分線是射線,是不一樣的。

請你在圖中再畫出另兩個角的平分線,看看有什么發(fā)現(xiàn)?

三角形三個角的平分線相交于一點。

如果三角形是直角三角形、鈍角三角形,上面的結(jié)論還成立嗎?請畫圖回答。

上面的結(jié)論還成立。

想一想:三角形的三條高、三條中線、三條角平分線的交點有什么不同?

三角形的三條中線的交點、三條角平分線的交點在三角形的內(nèi)部,而銳三角形的三條高

的交點在三角形的內(nèi)部,直角三免形三條高的交戰(zhàn)在角直角頂點,鈍角三角形的三條高的交

點在三角形的外部。

五、課堂練習(xí)

課本5直練習(xí)1、2題。

六、課堂小結(jié)

1、三角形的高、中線、角平分線的概念和畫法。

2、三角形的三條高、三條中線、三條角平分線及交點的位置規(guī)律。

七作業(yè):

課本8直3、4;

八、教后記

11.1.3三角形的穩(wěn)定性

[教學(xué)目標(biāo)]

〔知識與技能〕

1、知道三角形具有穩(wěn)定性,四邊形沒有穩(wěn)定性;2、了解三角形的穩(wěn)定性在生產(chǎn)、生

活中的應(yīng)用。

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣

〔情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

[重點難點]三角形穩(wěn)定性及應(yīng)用。

[教學(xué)過程]

一、情景導(dǎo)入

蓋房子時,在窗框未安裝之前,木工師傅常常先在窗框上斜釘一根木條,為什么要這樣

做呢?

二、三角形的穩(wěn)定性

〔實驗〕1、把三根木條用釘子釘成一個三角形木架,然后扭動它,它的形狀會改變嗎?

(1)

不會改變。

2、把四根木條用釘子釘成一個四邊形木架,然后扭動它,它的形狀會改變嗎?

會改變。

3、在四邊形的木架上再釘一根木條,將它的一對頂點連接起來,然后扭動它,它的形

狀會改變嗎?

不會改變。

從上面的實驗中,你能得出什么結(jié)論?

三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性。

三、三角形穩(wěn)定性和四邊形不穩(wěn)定的應(yīng)用

三角形具有穩(wěn)定性固然好,四邊形不具有穩(wěn)定性也未必不好,它們在生產(chǎn)和生活中都

有廣泛的應(yīng)用。如:

鋼架橋、屋頂鋼架和起重機(jī)都是利用三角形的穩(wěn)定性,活動掛架則是利用四邊形的不

穩(wěn)定性。

你還能舉出一些例子嗎?

四、課堂練習(xí)

1、下列圖形中具有穩(wěn)定性的是()

A正方形B長方形C直角三角形D平行四邊形

2、要使下列木架穩(wěn)定各至少需要多少根木棍?

六、教后記

(3)

三角形的內(nèi)角

[教學(xué)目標(biāo)]

〔知識與技能〕

掌握三角形內(nèi)角和定理。

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣

〔情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

[重點難點]三角形內(nèi)角和定理是重點;三角形內(nèi)角和定理的證明是難點。

[教學(xué)過程]

一、導(dǎo)入新課

我們在小學(xué)就知道三角形內(nèi)角和等于180°,這個結(jié)論是通過實驗得到的,這個命題是

不是真命題還需要證明,怎樣證明呢?

二、三角形內(nèi)角和的證明

回顧我們小學(xué)做過的實驗,你是怎樣操作的?

把一個三角形的兩個角剪下拼在第三個角的頂點處,用量角器量出

NBCD的度數(shù),可得到NA+NB+NACB=180°。[投影1]

想一想,還可以怎樣拼?

①剪下NA,按圖(2)拼在一起,可得至l]NA+NB+NACB=180°。

圖2

②把NZ?和NC剪下按圖(3)拼在起,可得到ZA+/B+/ACB=180°。

如果把上面移動的角在圖上進(jìn)行轉(zhuǎn)移,由圖1你能想到證明三角形內(nèi)角和等于180°的

方法嗎?

已知△ABC,求證:ZA+ZB+ZC=180°o

證明一

過點C作CM〃AB,則NA:/ACM,ZB=ZDCM,

又ZACB+ZACM+ZDCM=180°

???ZA+ZB+ZACB=180°o

即;三角形的內(nèi)角和等于180°。

由圖2、圖3你又能想到什么證明方法?請說說證明過程。

三、例題

例如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島

的北偏西40°方向,從C島看A、B兩島的視角NACB是多少度?

分析:怎樣能求出NACB的度數(shù)?

根據(jù)三角形內(nèi)角和定理,只需求出NCAB和NCBA的度數(shù)即可。

NCAB等于多少度?怎樣求/CBA的度數(shù)?

解:ZCBA=ZBAD-ZCAD=8O-5O°=3O0

VAD/7BE:.ZBAD+ZABE=180°

???ZABE=1800-ZBAD=180-80°=100°

:.ZABC=ZABE-ZEBC=100°-40°=60°

:.ZACB=1800-ZABC-ZCAB=18O°-6Oo-3Oo=9O°

答:從C島看AB兩島的視角NACB=180°是90°。

四、課堂練習(xí)

課本13WK2題。

五作業(yè):

16M1、3、4;

六、教后記

11.2.2三角形的外角

[教學(xué)目標(biāo)]

〔知識與技能〕

理解三角形的外角;2、掌握三角形外角的性質(zhì),能利用三角形外角的性質(zhì)解決問題。

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣

〔情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

[重點難點]三角形的外角和三角形外角的性質(zhì)是重點;理解三角形的外角是難點。

[教學(xué)過程]

一、導(dǎo)入新課

〔投影1〕如圖,^ABC的三個內(nèi)角是什么?它們有什么關(guān)系?

是/A、NB、ZC,它們的不是180°。

若延長BC至D,則NACD是什么角?這個角與AABC的三個內(nèi)角有什么關(guān)系?

二、三角形外角的概念

NACD叫做AABC的外角。也就是,三角形一邊與另一邊的延長線組成的角,叫做三角

形的外角。A

想一想,三角形的外角共有幾個?八

共有六個。/\/H

注意:每個頂點處有兩個外角,它們是對頂角。研究與//

三角形外角有關(guān)的問題時.,通常每個頂點處取一個外角.BZ____________WD

三、三角形外角的性質(zhì)C

容易知道,三角形的外角NACD與相鄰的內(nèi)角NACB是鄰補(bǔ)角,那與另外兩個角有怎樣

的數(shù)量關(guān)系呢?I、

〔投影2〕如圖,這是我們證明三角形內(nèi)角和定理時畫的輔助線,你能就

此圖說明NACD與NA、NB的關(guān)系嗎?

VCE/7AB,AZA=Z1,ZB=Z2

XZACD=Z1+Z2

AZACD=ZA+ZB

你能用文字語言敘述這個結(jié)論嗎?

三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和。

由加數(shù)與和的關(guān)系你還能知道什么?

三角形的一個外角大于與它不相鄰的任何一個內(nèi)角。

即ZACZ>ZA,^ACD>ZB<,

四、例題

〔投影3〕例如圖,NL/2、N3是三角形ABC的三個外角,它們的和是多少?

分析:N1與NBAC、/2與NABC、N3與NACB有什么關(guān)系?NBAC、ABC、NACB有

什么關(guān)系?

W;VZ1FZBAC=180°,Z2?ZABC=180°,Z3IZACB=180°,

/.Zl+ZBAC+Z2+ZABC+Z3+ZACB=540°

又ZBAC+ZABC+ZACB=180°

/.Zl+Z2+Z3==360°o

你能用語言敘述本例的結(jié)論嗎?

三角形外角的和等于360%

五、課堂練習(xí)

課本15真練習(xí);

六、課堂小結(jié)

1、什么是三角形外角?

2、三角形的外角有哪些性質(zhì)?

七、作業(yè):

課本12M5、6;

八、教后記

11.3.1多邊形

【教學(xué)目標(biāo)]

〔知識與技能〕

1、了解多邊形及有關(guān)概念,理解正多邊形的概念.2、區(qū)別凸多邊形與凹多邊形.

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣

〔情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

[重點難點]多邊形及有關(guān)概念、正多邊形的概念是重點;區(qū)別日多邊形與凹多邊形是

難點。

[教學(xué)過程]

一、情景導(dǎo)入

[投影1]看下面的圖片,你能從中找出由一些線段圍成的圖形嗎?

二、多邊形及有關(guān)概念

這些圖形有什么特點?

由幾條線段組成;它們不在同一條直線上;首尾順次相接.

這種在平面內(nèi),由一些不在同一條直線上的線段首尾順次相接組成的圖形叫做多邊形。

多邊形按組成它的線段的條數(shù)分成三角形、四邊形、五邊形……、n邊形。這就是說,

一個多邊形由兒條線段組成,就叫做兒邊形,三角形是最簡單的多邊形。

與三角形類似地,多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,如圖中的NA、/B、

NC、ND、NE。多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.如圖中的N

1是五邊形ABCDE的一個外角。[投影2]

連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.

四邊形有幾條對角線?五邊形有幾條對角線?畫圖看看。

你能猜想n邊形有多少條對角線嗎?說說你的想法。

n邊形有l(wèi)/2n(n-3)條對角線。因為從n邊形的一個頂點可以引n—3條對角線,n

個頂點共引n(n-3)條對角線,又由于連接任意兩個頂點的兩條對角線是相同的,所以,

n邊形有皿n(n-3)條對角線。

三、凸多邊形和凹多邊形

[投影3]如圖,下面的兩個多邊形有什么不同?

(2)

在圖(1)中,畫出四邊形A3CD的任何一條邊所在的直線,整個圖形都在這條直線的

同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上

述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側(cè),我們

稱它為凹多邊形。

注意:今后我們討論的多邊形指的都是凸多邊形.

四、正多邊形的概念

我們知道,等邊三角形、正方形的各個角都相等,各條邊都相等,像這樣各個角都相等,

各條邊都相等的多邊形叫做正多邊形。

[投影4]下面是正多邊形的一些例子。

正六邊形

五、課堂練習(xí)

課本21^練習(xí)1、2。

3、有五個人在告別的時候相互各握了一次手,他們共握了多少次手?你能找到一個幾

何模型求說明嗎?

六、課堂小結(jié)

1、多邊形及有關(guān)概念。

2、區(qū)別凸多邊形和凹多邊形。

3、正多邊形的概念。

4、n邊形對角線有l(wèi)/2n(n—3)條。

七、作業(yè):

課本24M1。

八、教后記

11.3.2多邊形的內(nèi)角和

[教學(xué)目標(biāo)]

〔知識與技能〕

1、了解多邊形的內(nèi)角、外角等概念;

2、2、能通過不同方法探索多邊形的內(nèi)角和與外角和公式,并會應(yīng)用它們進(jìn)行有關(guān)計

算.

〔過程與方法〕

在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生的合情推理能力,逐步養(yǎng)成數(shù)學(xué)推

理的習(xí)慣

〔情感、態(tài)度與價值觀〕

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,增強(qiáng)克服困難的勇氣和信心

[重點難點]多邊形的內(nèi)角和與多邊形的外角和公式是重點;多邊形的內(nèi)角和定理的推導(dǎo)

是難點。

[教學(xué)過程]

一、復(fù)習(xí)導(dǎo)入

我們已經(jīng)證明了三角形的內(nèi)角和為180°,在小學(xué)我們用量角器量過四邊形的內(nèi)角的度

數(shù),知道四邊形內(nèi)角的和為360。,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?

二、多邊形的內(nèi)角和

〔投影1〕如圖,從四邊形的?個頂點出發(fā)可以引幾條對角線?它們將四邊形分成幾個

三角形?那么四邊形的內(nèi)角和等于多少度?

可以引一條對角線;它將四邊形分成兩個三角形;因此,四邊形的內(nèi)角和二AABD的內(nèi)

角和+4BDC的內(nèi)角和=2X180°=360°。

類似地,你能知道五邊形、六邊形……n邊形的內(nèi)角和是多少度嗎?

〔投影2〕觀察下面的圖形,填空:

五邊形六邊形

從五邊形一個頂點出發(fā)可以引—對角線,它們將五邊形分成—三角形,五邊形的內(nèi)

角和等于;

從六邊形一個頂點出發(fā)可以引—對角線,它們將六邊形分成—三角形,六邊形的內(nèi)

角和等于;

〔投影3〕從n邊形一個頂點出發(fā),可以引—對角線,它們將n邊形分成一三角形,

n邊形的內(nèi)角和等于c

n邊形的內(nèi)角和等于(n-2)-180o.

從上面的討論我們知道,求n邊形的內(nèi)角和可以將n邊形分成若干個三角形來求?,F(xiàn)

在以五邊形為例,你還有其它的分法嗎?

分法一〔投影3〕如圖1,在五邊形ABCDE內(nèi)任取一點0,連結(jié)0A、OB、0C、0D、0E,

則得五個三角形。

,五邊形的內(nèi)角和為5X180,—2X180°=(5—2)X18O0=540°。

分法二〔投影4〕如圖2,在邊AB上取一點0,連0E、0D、0C,則可以(5-1)個

三角形。

???五邊形的內(nèi)角和為(5—1)X1800—180°=(5—2)X180c

如果把五邊形換成n邊形,目同樣的方法可以得到n邊形內(nèi)角和=(n—2)X180°.

三、例題

【投影61例1如果一個四邊形的一組對角互補(bǔ),那么另一組對角有什么關(guān)系?

如圖,已知四邊形ABCD中,ZA+ZC=180°,求NB與ND的關(guān)系.

分析:NA、ND、NC、ND有什么關(guān)系?

解:VZA+ZB+ZC+ZD=(4-2)X180°=360°

又NA+NC=180°

???NB+ND=360°-(ZA+ZC)=180°

這就是說,如果四邊形一組對角互補(bǔ),那么另一組對角也互補(bǔ).

〔投影7〕例2如圖,在六邊形的每個頂點處各取一個外角,這些外角的和叫做六邊

形的外角和.六邊形的外角和等于多少?

如圖,已知Nl,Z2,N3,/4,Z5,N6分別為六邊形ABCDEF的外角,求/1+N2+

N3+N4+N5+N6的值.

分析:多邊形的一個外角同與它相鄰的內(nèi)角有什么關(guān)系?六邊形

解:VZ1+ZBAF=18O0Z2+ZABC=180°Z3+ZBAD=180°

Z4+ZCDE=180°Z5+ZDEF=180°Z6+ZEFA=180°

.,.Z1+ZBAF+Z2+ZABC+Z3+ZBAD+Z4+ZCDE+Z5+ZDEF+Z6+ZEFA=6X1800

又N1+N2+N3+N4+N5+N6=4X180°

AZBAF+ZABC+ZBAD+ZCDE+ZDEF+ZEFA=6X180°-4X180°=360°

這就是說,六邊形形的外角和為360°。

如果把六邊形換成n邊形可以得到同樣的結(jié)果:

n邊形的外角和等于360°。

對此,我們也可以這樣來理解?!就队?)如圖,從多邊形的一個頂點A出發(fā),沿多邊

形各邊走過各頂點,再回到A點,然后轉(zhuǎn)向出發(fā)時的方向,在行程中所轉(zhuǎn)的各個角的和就是

多邊形的外角和,由于走了一周,所得的各個角的和等于一個周角,所以多邊形的外角和等

于360°.

四、課堂練習(xí)

課本24直1、2、3題。

五、課堂小結(jié)

n邊形的內(nèi)角和是多少度?

n邊形的外角和是多少度?

六、作業(yè):

課本24M2、3;

七、教后記

本章小結(jié)

一、知識結(jié)構(gòu)

二、回顧與思考

1、什么是三角形?什么是多邊形?什么是正多邊形?

三角形是不是多邊形?

2、什么是三角形的高、中線、角平分線?什么是對角線?

三角形有對角線嗎?n邊形的的對角線有多少條?

3、三角形的三條高,三條中線,三條角平分線各有什么特點?

4、三角形的內(nèi)角和是多少?n邊形的內(nèi)角和是多少?

你能用三角形的內(nèi)角和說明n邊形的內(nèi)角和嗎?

5、三角形的外角和是多少?n邊形的外角和是多少?

你能說明為什么多邊形的外角和與邊數(shù)無關(guān)嗎?

6、怎樣才算是平面鑲嵌?平面鑲嵌的條件是什么?能單獨(dú)進(jìn)行平面鑲嵌的多邊形有哪

些?

你能舉一個幾個多邊形進(jìn)行平面鑲嵌的例子嗎?

三、例題導(dǎo)引

例1如圖,在4ABC中,ZA:ZB:ZC=3:4:5,BD、CE分別是邊AC、AB上的高,

BD、CE相交于點H,求NBHC的度數(shù)。

例2如圖,把AABC沿DE折疊,當(dāng)點A落在四邊哆響,部時,

探索NA與N1+N2有什么數(shù)量關(guān)系?并說明理由。

除:“一

例3如圖所示,在AABC中,Z^ABC的內(nèi)角平分線與外角平分線交于點P,試說明NP=

1/2ZA.

四、鞏固練習(xí)

課本28—29真復(fù)習(xí)題7(第3題可不做).

五、教后記

第十二章全等三角形

單元要點分析

教學(xué)內(nèi)容

本章的主要內(nèi)容是全等三角形.主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的

方法,并學(xué)會怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個小節(jié),第一節(jié)學(xué)習(xí)三角形全等

的概念、性質(zhì);第二節(jié)學(xué)習(xí)三角形全等的判定方法和直角三角形全等的特殊判定方法;第三

節(jié)利用三角形全等證明角的平分線的性質(zhì),會利用角的平分線的性質(zhì)進(jìn)行證明.

教材分析

教材力求創(chuàng)設(shè)現(xiàn)實、有趣的叵題情境,使學(xué)生經(jīng)歷從現(xiàn)實活動中抽象出兒何模型和運(yùn)用

所學(xué)內(nèi)容解決實際問題的過程.在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點放在第一個條

件上,通過“邊邊邊”條件探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣

正確地表達(dá)證明過程.學(xué)生開始學(xué)習(xí)三角形判定定理時的困難在于定理的證明,而這些推理

證明并不要求學(xué)生掌握.為了突出判定方法這條主渠道,教材都作為基本事實提出來,在畫

圖、實驗中讓學(xué)生知道它們的正確性就可以了.在“角的平分線的性質(zhì)”一節(jié)中的兩個互逆

定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,這

將在“勾股定理”中介紹.

三維目標(biāo)

1.知識與技能

在探索全等三角形的性質(zhì)與判定中,提高認(rèn)知水平,積累數(shù)學(xué)活動經(jīng)驗.

2.過程與方法

經(jīng)歷探索三角形全等的判定的,發(fā)展空間觀念和有條理的表達(dá)能力,掌握兩個三角形全

等的判定并應(yīng)用于實際之中.

3.情感、態(tài)度與價值觀

培養(yǎng)良好的觀察、操作、想象、推理能力,感悟幾何學(xué)的內(nèi)涵.

重、難點與關(guān)鍵

1.重點:使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式.

2.難點:領(lǐng)會證明的分析思路,學(xué)會運(yùn)用綜合法證明的格式.

3.關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對定理的證明.

教學(xué)建議

1.注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過程.在教學(xué)中鼓勵學(xué)生觀

察、操作、推理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì).

2.注重創(chuàng)設(shè)具有現(xiàn)實性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用.

3.注意直觀操作與說理的結(jié)合,逐步培養(yǎng)學(xué)生有條理的思考和表達(dá).

課時劃分

本單元共分成9課時.

12.1全等三角形1課時

12.2三角形全等的性質(zhì)5課時

12.3角的平分線的性質(zhì)2課時

復(fù)習(xí)與交流1課時

12.1全等三角形

教學(xué)內(nèi)容

本節(jié)課主要介紹全等三角形的概念和性質(zhì).

教學(xué)目標(biāo)

1.知識與技能

領(lǐng)會全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念.

2.過程與方法

經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角.

3.情感、態(tài)度與價值觀

培養(yǎng)觀察、操作、分析能力,體會全等三角形的應(yīng)用價值.

重、難點與關(guān)鍵

1.重點:會確定全等三角形的對應(yīng)元素.

2.難點:掌握找對應(yīng)邊、對應(yīng)角的方法.

3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:(1)全等三角形對應(yīng)角所對的邊是對應(yīng)

邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊:(2)對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角

是對應(yīng)角.

教具準(zhǔn)備

四張大小一樣的紙片、直尺、剪刀.

教學(xué)方法

采用“直觀一感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實例,加深認(rèn)識.

教學(xué)過程

一、動手操作,導(dǎo)入課題

1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,思考得到的圖形有何特點?

2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,思考得到的圖形有何特點?

【學(xué)生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論.

【教師活動】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個多邊形和三角形.

學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注

意整個過程要細(xì)心.

【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這

樣的兩個圖形叫做全等形,用“絲”表示.

概念:能夠完全重合的兩個三角形叫做全等三角形.

【教師活動】在紙版上任意剪下一個三角形,要求學(xué)生手拿一個三角形,做如下運(yùn)動:

平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動前后的三角形會全等嗎?

【學(xué)生活動】動手操作,實踐感知,得出結(jié)論:兩個三角形全等.

【教師活動】要求學(xué)生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂

點、三個角、三條邊、每條邊的邊角、每個角的對邊.

【學(xué)生活動】把兩個二角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時

能完全重在一起?(2)此時它們的頂點、邊、角有何特點?

【交流討論】通過同桌交流,實驗得出下面結(jié)論:

1.任意放置時,并不一定完全重合,只有當(dāng)把相同的角旋轉(zhuǎn)到一起時才能完全重合.

2.這時它們的三個頂點、三條邊和三個內(nèi)角分別重合了.

3.完全重合說明三條邊對應(yīng)相等,三個內(nèi)角對應(yīng)相等,對應(yīng)頂點在相對應(yīng)的位置.

【教師活動】根據(jù)學(xué)生交流的情況,給予補(bǔ)充和語言上的規(guī)范.

1.概念:把兩個全等的三角形重合到一起,重合的頂點叫做對應(yīng)頂點,重合的邊叫做

對應(yīng)邊,重合的角叫做對應(yīng)角.

2.證兩個三角形全等時,通常把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上,如果本圖

11.1—24ABC和△DBC全等,點A和點D,點B和點B,點C和點C是對應(yīng)頂點,記作△

ABC色△DBC.

課本圖11.1一1課本圖11.1一2

【問題提出】課本圖11.1—1中,AABC^ADEF,對應(yīng)邊有什么關(guān)系?對應(yīng)角呢?

【學(xué)生活動】經(jīng)過觀察得到下面性質(zhì):

1.全等三角形對應(yīng)邊相等;

2.全等三角形對應(yīng)角相等.

二、隨堂練習(xí),鞏固深化

課本P37練習(xí).

【探研時空】

1.如圖1所示,ZiACF經(jīng)ADBE,ZE=ZF,若AD=20cm,BC=8cm,你能求出線段AB的

長嗎?與同伴交流.(AB=6)

2.如圖2所示,ZXABC絲/XAEC,ZB=30°,ZACB=85°,求出AAEC各內(nèi)角的度數(shù).

(ZAEC=30°,ZEAC=65°,ZECA=85°)

三、課堂總結(jié),發(fā)展?jié)撃?/p>

1.什么叫做全等三角形?

2.全等三角形具有哪些性質(zhì)?

四、布置作業(yè),專題突破

課本P43習(xí)題12.1第1,2,3,4題.

五、板書設(shè)計

把黑板分成左、中、右三部分,左邊板書木節(jié)課概念,中間部分板書“思考”中的問題,

右邊部分板書學(xué)生的練習(xí).

疑難解析

由于兩個三角形的位置關(guān)系不同,在找對應(yīng)邊、對應(yīng)角時,可以針對兩個三角形不同的

位置關(guān)系,尋找對應(yīng)邊、角的規(guī)制:(1)有公共邊的,公共邊一定是對應(yīng)邊;(2)有公共

角的,公共角一定是對應(yīng)角;(3)有對頂角的,對頂角一定是對應(yīng)角;兩個全等三角形中一

對最長的邊(或最大的角)是對應(yīng)邊(或角),一對最短的邊(或最小的角)是對應(yīng)邊(或

角)

六、教后記

12.2.1三角形全等的判定(SSS)

教學(xué)內(nèi)容

本節(jié)課主要內(nèi)容是探索二角形全等的條件(SSS),及利用全等二角形進(jìn)行證明.

教學(xué)目標(biāo)

1.知識與技能

了解三角形的穩(wěn)定性,會應(yīng)用“邊邊邊”判定兩個三角形全等.

2.過程與方法

經(jīng)歷探索“邊邊邊”判定全等三角形的過程,解決簡單的問題.

3.情感、態(tài)度與價值觀

培養(yǎng)有條理的思考和表達(dá)能力,形成良好的合作意識.

重、難點與關(guān)鍵

1.重點:掌握“邊邊邊”判定兩個三角形全等的方法.

2.難點:理解證明的基本過程,學(xué)會綜合分析法.

3.關(guān)鍵:掌握圖形特征,尋找適合條件的兩個三角形.

教具準(zhǔn)備

一塊形狀如圖1所示的硬紙片,直尺,圓規(guī).

教學(xué)方法

采用“操作——實驗”的教學(xué)方法,讓學(xué)生親自動手,形成直觀形象.

教學(xué)過程

一、設(shè)疑求解,操作感知

【教師活動】(出示教具)

問題提出:一塊三角形的玻璃損壞后,只剩下如圖2所示的殘片,你對圖中的殘片作

哪些測量,就可以割取符合規(guī)格的三角形玻璃,與同伴交流.

【學(xué)生活動】觀察,思考,回答教師的問題.方法如下:可以將圖1的玻璃碎片放在

一塊紙板上,然后用直尺和鉛筆或水筆畫出一塊完整的三角形.如圖2,剪下模板就可去

割玻璃了.

【理論認(rèn)知】

如果AABCgAA'B'C',那么它們的對應(yīng)邊相等,對應(yīng)角相等.反之,如果4ABC

與AA,B,L滿足三條邊對應(yīng)相等,三個角對應(yīng)相等,即AB=A,,BC=BZU,CA=CZ

Az,ZA=ZAZ,ZB=ZBf,ZC=ZCf.

這六個條件,就能保證△ABCg^A'C',從剛才的實踐我們可以發(fā)現(xiàn):只要兩個

三角形三條對應(yīng)邊相等,就可以保證這兩塊三角形全等.

信不信?

【作圖驗證】(用直尺和圓規(guī))

先任意畫出一個△ABC,再畫一個aA'B'C',使A'B'=AB,B/。'=BC,C'A'=CA.把

畫出的AA,B,Cz剪下來,放在AABC上,它們能完全重合嗎?(即全等嗎)

【學(xué)生活動】拿出直尺和圓規(guī)按上面的要求作圖,并驗證.(如課本圖11.2-2所示)

AA1

畫一個AA,B'C',使卜Bz=AB',A'Cz=AC,B'C'=BC:

1.畫線段取B'Cz=BC;

2.分別以B'、C'為圓心,線段AB、AC為半徑畫弧,兩弧交于點A';

3.連接線段A'B'、A'Cz.

【教師活動】巡視、指導(dǎo),引入課題:”上述的生活實例和尺規(guī)作圖的結(jié)果反映了什么

規(guī)律?”

【學(xué)生活動】在思考、實踐的基礎(chǔ)上可以歸納出下面判定兩個三角形全等的定理.

(1)判定方法:三邊對應(yīng)相等的兩個三角形全等(簡寫成“邊邊邊”或“SSS”).

(2)判斷兩個三角形全等的推理過程,叫做證明三角形全等.

【評析】通過學(xué)生全過程的畫圖、觀察、比較、交流等,逐步探索出最后的結(jié)論一邊

邊邊,在這個過程中,學(xué)生不僅得到了兩個三角形全等的條件,同時增強(qiáng)了數(shù)學(xué)體驗.

二、范例點擊,應(yīng)用所學(xué)

【例1】如課本圖11.2—3所示,ZXABC是一個鋼架,AB=AC,AD是連接點A與BC中

點D的支架,求證△ABDgAACD.(教師板書)

【教師活動】分析例1,分析:要證明△ABDgZXACD,可看這兩個三角形的三條邊是否

對應(yīng)相等.A

證明:???D是BC的中點,

ABD=CDBDC

在AABD和4ACD中

AB=AC,

<BD=CD,

AD=AD.

AAABD^AACD(SSS).

【評析】符號“???”表示“因為",“J”表示“所以“:從例1可以看出,證明是由題

設(shè)(已知)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論(求證)正確的過程.書寫中注意對應(yīng)

頂點要寫在同一個位置上,哪個三角形先寫,哪個三角形的邊就先寫.

三、實踐應(yīng)用,合作學(xué)習(xí)

【問題思考】

已知AC=FE,BODE,點A、D,B、F在直線上,AD=FB(如圖所示),要用“邊邊邊”證

明△ABC@Z\FDE,除了已知中的AC=FE,BODE以外,還應(yīng)該有什么條件?怎樣才能得到這

個條件?

【教師活動】提出問題,巡視、引導(dǎo)學(xué)生,并請學(xué)生說說自己的想法.

【學(xué)生活動】先獨(dú)立思考后,再發(fā)言:“還應(yīng)該有AB邛D,只要AD二FB兩邊都加上DB即

可得到可二FD.”

【教學(xué)形式】先獨(dú)立思考.再合作交流,師生互動.

四、隨堂練習(xí),鞏固深化

課本P37練習(xí).

【探研時空】

如圖所示,AB=DF,AC二DE,BE=CF,BC與EF相等嗎?你能找到一對全等三角形嗎?說

明你的理由.(BC;EF,AABC^ADFE)

BECF

五、課堂總結(jié),發(fā)展?jié)撃?/p>

1.全等二角形性質(zhì)是什么?

2.正確地判斷出全等三角形的對應(yīng)邊、對應(yīng)角,利用全等三角形處理問題的基礎(chǔ),你

是怎樣掌握判斷對應(yīng)邊、對應(yīng)角的方法?

3.“邊邊邊”判定法告訴我們什么呢?(答:只要一個三角形三邊長度確定了,則這

個三角形的形狀大小就完全確定了,這就是三角形的穩(wěn)定性)

六、布置作業(yè),專題突破

1.課本P15習(xí)題11.2第1,2題.

2.選用課時作業(yè)設(shè)計.

七、板書設(shè)計

把黑板平均分成三份,左邊部分板書“邊邊邊”判定法,中間部分板書例題,右邊部分

板書練習(xí).

八、教后記

12.2.2三角形全等判定(SAS)

教學(xué)內(nèi)容

本節(jié)課主要內(nèi)容是探索三角形全等的條件(SAS),及利用全等三角形證明.

教學(xué)目標(biāo)

1.知識與技能

領(lǐng)會“邊角邊”判定兩個三角形的方法.

2.過程與方法

經(jīng)歷探窕三角形全等的判定方法的過程,學(xué)會解決簡單的推理問題.

3.情感、態(tài)度與價值觀

培養(yǎng)合情推理能力,感悟三角形全等的應(yīng)用價值.

重、難點及關(guān)鍵

1.重點:會用“邊角邊”證明兩個三角形全等.

2.難點:應(yīng)用結(jié)合法的格式表達(dá)問題.

3.關(guān)鍵:在實踐、觀察中正確選擇判定三角形全等的方法.

教具準(zhǔn)備投影儀、直尺、圓規(guī).

教學(xué)方法采用“操作一實驗”的教學(xué)方法,讓學(xué)生有一個直觀的感受.

教學(xué)過程

一、回顧交流,操作分析

【動手畫圖】

【投影】作一個角等于已知角.

【學(xué)生活動】動手用直尺、圓規(guī)畫圖.

已知:ZAOB.

求作:ZAiOiBp使NAQIBF/AOB.

【作法】(1)作射線OiA];(2)以點0為圓心,以適當(dāng)長為半徑畫弧,交0A于點C,

交0B于點D;(3)以點01為圓心,以0C長為半徑畫弧,交01Ai于點G;(4)以點Q

為圓心,以CD長為半徑畫弧,交前面的弧于點D];(5)過點Di作射線01B】,NAQ1B】就

是所求的角.

【導(dǎo)入課題】

教師敘述:請同學(xué)們連接CD、C】Di,回憶作圖過程,分析ACOD和△CQiD1中相等的

條件.

【學(xué)生活動】與同伴交流,發(fā)現(xiàn)下面的相等量:

OD=OiDi,OC=OiG,ZCOD=ZC1O1D1,Z^COD竺△g0孫.

歸納出規(guī)律:

兩邊和它們的夾角對應(yīng)相等的兩個三角形全等(簡寫成“邊角邊”或“SAS

【評析】通過讓學(xué)生回憶基本作圖,在作圖過程中體會相等的條件,在直觀的操作過程

中發(fā)現(xiàn)問題,獲得新知,使學(xué)生的知識承上啟下,開拓思維,發(fā)展探究新知的能力.

【媒體使用】投影顯示作法.

【教學(xué)形式】操作感知,互動交流,形成共識.

二、范例點擊,應(yīng)用新知

【例2】如課本圖11.2-6所示有一池塘,要測池塘兩側(cè)A、B的距離,可先在平地上

取一個可以直接到達(dá)A和B的點,連接AC并延長到D,使CD=CA,連接BC并延長到E,使

CE=CB,連接DE,那么量出DE的長就是A、B的距離,為什么?

【教師活動】操作投影儀,顯示例2,分析:如果能夠證明△ABCgADEC,就可以得出

AB=DE.在△ABC和aDEC中,CA=CD,CB=CE,如果能得出N1=N2,△ABC和△DEC就全等

r.

證明:在AABC和aDEC中

CA=CD

Z1=Z2

CB=CE

/.△ABC^ADEC(SAS)

.,.AB=DE

想一想:N『N2的依據(jù)是什么?(對頂角相等)AB二DE的依據(jù)是什么?(全等三角形

對應(yīng)邊相等)

【學(xué)生活動】參與教師的講例之中,領(lǐng)悟“邊角邊”證明三角形全等的方法,學(xué)會分析

推理和規(guī)范書寫.

【媒體使用】投影顯示例2.

【教學(xué)形式】教師講例,學(xué)生接受式學(xué)習(xí)但要積極參與.

【評析】證明分別屬于兩個三角形的線段相等或角相等的問題,常常通過證明這兩個三

角形全等來解決.

三、辨析理解,正確掌握

【問題探究】(投影顯示)

我們知道,兩邊和它們的夾角對應(yīng)相等的兩個三角形全等,由“兩邊及其中一邊的對角

對應(yīng)相等”的條件能判定兩個三角形全等嗎?為什么?

【教師活動】拿出教具進(jìn)行示范,讓學(xué)生直觀地感受到問題的本質(zhì).

操作教具:把一長一短兩根細(xì)木棍的一端用螺釘較合在一起,使長木棍的另一端與射

線BC的端點B重合,適當(dāng)調(diào)整好長木棍與射線BC所成的角后,固定住長木棍,把短木棍擺

起來(課本圖11.2-7),出現(xiàn)一人現(xiàn)象:^ABC與4ABD滿足兩邊及其中一邊對角相等的條

件,但aABC與aABD不全等.這說明,有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不

一定全等.

【學(xué)生活動】觀察教師操作教具、發(fā)現(xiàn)問題、辨析理解,動手用直尺和圓規(guī)實驗一次,

做法如下:(如圖1所示)

(1)畫/ABT;(2)以A為圓心,以適當(dāng)長為半徑,畫弧,交BT于C、C';(3)連

線AC,AC',ZXABC與AABC'不全等.

【形成共識】“邊邊角”不能作為判定兩個三角形全等的條件.

【教學(xué)形式】觀察、操作、感知,互動交流.

四、隨堂練習(xí),鞏固深化

課本P39練習(xí)第1、2題.

【探研時空】

一位

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論