版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濟(jì)南一中等四校2025屆高考考前模擬數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}2.已知函數(shù)的圖象如圖所示,則下列說法錯(cuò)誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是3.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.4.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對稱的點(diǎn)有2對,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.6.已知,是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.7.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.519.若函數(shù),在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.空間點(diǎn)到平面的距離定義如下:過空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動(dòng)點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.11.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.12.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲200個(gè)點(diǎn),己知恰有80個(gè)點(diǎn)落在陰影部分據(jù)此可估計(jì)陰影部分的面積是()A. B. C.10 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則________.14.在中,角,,所對的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),___.15.函數(shù)的值域?yàn)開____.16.某部門全部員工參加一項(xiàng)社會(huì)公益活動(dòng),按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.18.(12分)的內(nèi)角的對邊分別為,若(1)求角的大?。?)若,求的周長19.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.20.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.2、B【解析】
根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項(xiàng)判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故B錯(cuò)誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時(shí)也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計(jì)算能力,屬于中等題.3、B【解析】
由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識(shí),考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.4、B【解析】
考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對稱的點(diǎn)有2對,所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又,當(dāng)時(shí),,故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),,故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說明零點(diǎn)的存在性,本題屬于難題.5、D【解析】
利用復(fù)數(shù)的除法運(yùn)算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6、B【解析】
設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.7、A【解析】
利用復(fù)數(shù)的除法運(yùn)算化簡,求得對應(yīng)的坐標(biāo),由此判斷對應(yīng)點(diǎn)所在象限.【詳解】,對應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對應(yīng)點(diǎn)所在象限,屬于基礎(chǔ)題.8、B【解析】
展開式中的每一項(xiàng)是由每個(gè)括號(hào)中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號(hào)都出1,即;(2)兩個(gè)括號(hào)出,兩個(gè)括號(hào)出,一個(gè)括號(hào)出1,即;(3)一個(gè)括號(hào)出,一個(gè)括號(hào)出,三個(gè)括號(hào)出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識(shí)的生成過程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個(gè)括號(hào)各出一項(xiàng)相乘組合而成的.9、D【解析】
利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域?yàn)椋?,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時(shí),成立,即,且,解得.所以的取值范圍是.故選:D【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.10、D【解析】
建立平面直角坐標(biāo)系,將問題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動(dòng)點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【點(diǎn)睛】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動(dòng)點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.11、C【解析】
對任意的總有恒成立,因?yàn)?,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時(shí),當(dāng),當(dāng)時(shí),故選:C.【點(diǎn)睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計(jì)算能力,屬于難題.12、D【解析】
直接根據(jù)幾何概型公式計(jì)算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點(diǎn)睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【詳解】當(dāng)時(shí),由已知,可得,∵,①故,②由①-②得,∴.顯然當(dāng)時(shí)不滿足上式,∴故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.14、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)椋瑒t,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)?,,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.15、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域?yàn)樗院瘮?shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。16、60【解析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點(diǎn)睛】本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說明即可;②由①可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實(shí)數(shù)的值為.(2)①因?yàn)楹瘮?shù)在定義域上有兩個(gè)極值點(diǎn),且,所以在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根.所以解得.當(dāng)時(shí),若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個(gè)極值點(diǎn),且.所以,實(shí)數(shù)的取值范圍是.②由①可知,是方程的兩個(gè)不等的實(shí)根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當(dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增,所以當(dāng)時(shí),,又,,所以,即,故得證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點(diǎn)個(gè)數(shù)求參數(shù)范圍問題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.18、(1)(2)11【解析】
(1)利用二倍角公式將式子化簡成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數(shù)量積可得,從而可求周長.【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長為【點(diǎn)睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎(chǔ)題.19、(1),(2)【解析】試題分析:用零點(diǎn)分區(qū)間討論法解含絕對值的不等式,根據(jù)絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設(shè)知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域?yàn)椋ī仭?,?)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時(shí),恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].20、(1);(2)見解析.【解析】
(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項(xiàng)公式計(jì)算即可;(2)先求出數(shù)列的通項(xiàng),再利用裂項(xiàng)相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年工業(yè)生產(chǎn)配電箱采購合同范本詳規(guī)3篇
- 2025動(dòng)產(chǎn)質(zhì)押借款合同
- 2024年企業(yè)信用擔(dān)保委托保證合同3篇
- 2024年度抵押借款合同保險(xiǎn)條款范本3篇
- 2024年債轉(zhuǎn)股協(xié)議書范本:風(fēng)險(xiǎn)控制與收益共享協(xié)議3篇
- 2025轉(zhuǎn)讓委托代理合同
- 2025貨船租賃合同模板
- 天津2025年天津外國語大學(xué)碩士教師崗位招聘2人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解
- 2024年度二零二四企業(yè)信息化建設(shè)承包經(jīng)營合同范本3篇
- 新建雙相不銹鋼管項(xiàng)目立項(xiàng)申請報(bào)告
- 【9歷期末】安徽省淮北市2023-2024學(xué)年九年級(jí)上學(xué)期期末歷史試題
- 2024年度物流園區(qū)運(yùn)營承包合同范本3篇
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級(jí)上冊(含答案)
- 投資控股合同
- 2024-2025學(xué)年上學(xué)期武漢小學(xué)語文六年級(jí)期末模擬試卷
- 2023-2024學(xué)年貴州省貴陽外國語實(shí)驗(yàn)中學(xué)八年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級(jí)上學(xué)期期末歷史試題(含答案)
- 2025版國家開放大學(xué)專本科《計(jì)算機(jī)應(yīng)用基礎(chǔ)》一平臺(tái)在線形考任務(wù) (形考作業(yè)一至三)試題及答案
- 古代漢語專題-003-國開機(jī)考復(fù)習(xí)資料
- 《爭做文明班級(jí)》課件
- 【MOOC】信號(hào)與系統(tǒng)-西北工業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
評(píng)論
0/150
提交評(píng)論