版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市西城區(qū)161中學(xué)2025屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z滿足,則在復(fù)平面上對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.3.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.44.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.5.函數(shù)在上的大致圖象是()A. B.C. D.6.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標(biāo)原點),,則雙曲線C的漸近線方程為()A. B. C. D.7.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.9.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.10.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸11.已知集合,集合,則A. B.或C. D.12.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要二、填空題:本題共4小題,每小題5分,共20分。13.若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時,k的值為______.14.已知等比數(shù)列{an}的前n項和為Sn,若a215.已知函數(shù)在處的切線與直線平行,則為________.16.“學(xué)習(xí)強國”學(xué)習(xí)平臺是由中宣部主管,以深入學(xué)習(xí)宣傳新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員、面向全社會的優(yōu)質(zhì)平臺,現(xiàn)已日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門app.該款軟件主要設(shè)有“閱讀文章”和“視聽學(xué)習(xí)”兩個學(xué)習(xí)板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰(zhàn)答題”四個答題板塊.某人在學(xué)習(xí)過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學(xué)習(xí)”兩大學(xué)習(xí)板塊之間最多間隔一個答題板塊的學(xué)習(xí)方法有________種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.18.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結(jié)論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點為,當(dāng)變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,,點為射線與曲線的交點,求點的極徑.20.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.22.(10分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設(shè),由得:,由復(fù)數(shù)相等可得的值,進而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對應(yīng)的點的坐標(biāo)為,在第一象限.故選:A.【點睛】本題考查共軛復(fù)數(shù)的求法,考查對復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對應(yīng)的點,考查運算能力,屬于??碱}.2、C【解析】
令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.3、D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時取等號,故選:.【點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬于基礎(chǔ)題.4、D【解析】
連接,,因為,所以為異面直線與所成的角(或補角),不妨設(shè)正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設(shè)正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計算能力.5、D【解析】
討論的取值范圍,然后對函數(shù)進行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時,,故切線的斜率變小,當(dāng)時,,故切線的斜率變大,可排除A、B;當(dāng)時,,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時,,故切線的斜率變大,當(dāng)時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.6、C【解析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。7、A【解析】
本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.8、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.9、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關(guān)系.10、B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點:1.實際應(yīng)用問題;2.圓臺的體積.11、C【解析】
由可得,解得或,所以或,又,所以,故選C.12、B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數(shù)k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.14、-2【解析】試題分析:∵a2考點:等比數(shù)列性質(zhì)及求和公式15、【解析】
根據(jù)題意得出,由此可得出實數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.16、【解析】
先分間隔一個與不間隔分類計數(shù),再根據(jù)捆綁法求排列數(shù),最后求和得結(jié)果.【詳解】若“閱讀文章”與“視聽學(xué)習(xí)”兩大學(xué)習(xí)板塊相鄰,則學(xué)習(xí)方法有種;若“閱讀文章”與“視聽學(xué)習(xí)”兩大學(xué)習(xí)板塊之間間隔一個答題板塊的學(xué)習(xí)方法有種;因此共有種.故答案為:【點睛】本題考查排列組合實際問題,考查基本分析求解能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.18、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補形法,取的中點為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過我們反推出點對應(yīng)位置應(yīng)在處,進而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點,以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面.(Ⅱ)如圖所示,以為坐標(biāo)原點,以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題19、(1);(2)【解析】
(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點的直角坐標(biāo)系坐標(biāo)為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,極徑的求法,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因為,所以.所以.設(shè)平面的法向量為,則,即,令,則.于是.又因為,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.21、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)求導(dǎo)得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設(shè),求,令,故在單調(diào)遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當(dāng)時,在單調(diào)遞減,在單調(diào)遞增;當(dāng)時,在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)(),即,().令(),則,令,,故在單調(diào)遞
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 相冊模板培訓(xùn)課程設(shè)計
- 2024全新高端裝備制造增資入股協(xié)議書范本合同2篇
- 2024年度醫(yī)療設(shè)備維護與臨床應(yīng)用培訓(xùn)服務(wù)合同3篇
- 電路課程設(shè)計元件清單
- 瑜伽拉伸運動課程設(shè)計
- 機械課程設(shè)計書封面
- 物聯(lián)網(wǎng)綜合項目課程設(shè)計
- 《GPS接收系統(tǒng)PVT信息處理技術(shù)的研究與仿真》
- 畫面解析巖彩課程設(shè)計
- 系統(tǒng)課程設(shè)計技巧
- sy4209-《石油天然氣建設(shè)工程施工質(zhì)量驗收規(guī)范-天然氣凈化廠建設(shè)工程》
- 博士能數(shù)碼望遠鏡118326使用說明書
- 2021年12月英語六級聽力試題、原文及答案 兩套
- cad自定義線型、形定義線型、cad斜坡線學(xué)習(xí)
- 任上線立塔架線施工專項方案
- 139.華師《管理溝通》期末考試復(fù)習(xí)資料精簡版
- 小學(xué)英語不規(guī)則動詞表
- VIC模型PPT課件
- AQL2.5抽檢標(biāo)準(zhǔn)
- JJF 1629-2017 烙鐵溫度計校準(zhǔn)規(guī)范(高清版)
- 理想系列一體化速印機故障代碼
評論
0/150
提交評論