版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆上海市南模中學高三第四次(5月)模擬數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,則()A. B.C. D.2.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件3.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.4.定義域為R的偶函數滿足任意,有,且當時,.若函數至少有三個零點,則的取值范圍是()A. B. C. D.5.如圖是計算值的一個程序框圖,其中判斷框內應填入的條件是()A.B.C.D.6.已知數列的前項和為,且,,則()A. B. C. D.7.已知向量,,,若,則()A. B. C. D.8.年初,湖北出現由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數,則下列中表述錯誤的是()A.月下旬新增確診人數呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數超過確診人數C.月日至月日新增確診人數波動最大D.我國新型冠狀病毒肺炎累計確診人數在月日左右達到峰值9.已知向量,夾角為,,,則()A.2 B.4 C. D.10.把函數圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.11.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.012.已知函數()的最小值為0,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則______,______.14.若向量滿足,則實數的取值范圍是____________.15.在中,角A,B,C的對邊分別為a,b,c,且,則________.16.已知點為雙曲線的右焦點,兩點在雙曲線上,且關于原點對稱,若,設,且,則該雙曲線的焦距的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.18.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.19.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.20.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區(qū)間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數,求的分布列和數學期望.21.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.22.(10分)已知.(Ⅰ)當時,解不等式;(Ⅱ)若的最小值為1,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用指數函數和對數函數的單調性比較、、三個數與和的大小關系,進而可得出、、三個數的大小關系.【詳解】對數函數為上的增函數,則,即;指數函數為上的增函數,則;指數函數為上的減函數,則.綜上所述,.故選:C.【點睛】本題考查指數冪與對數式的大小比較,一般利用指數函數和對數函數的單調性結合中間值法來比較,考查推理能力,屬于基礎題.2.A【解析】
畫出“,,,所表示的平面區(qū)域,即可進行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.3.C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數形結合思想和向量法的應用,屬于中檔題.4.B【解析】
由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數形結合,根據,求得的取值范圍.【詳解】是定義域為R的偶函數,滿足任意,,令,又,為周期為的偶函數,當時,,當,當,作出圖像,如下圖所示:函數至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數周期性及其應用,解題過程中用到了數形結合方法,這也是高考??嫉臒狳c問題,屬于中檔題.5.B【解析】
根據計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據結果填寫判斷框,屬于基礎題.6.C【解析】
根據已知條件判斷出數列是等比數列,求得其通項公式,由此求得.【詳解】由于,所以數列是等比數列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數列的證明,考查等比數列通項公式,屬于基礎題.7.A【解析】
根據向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:【點睛】本題考查根據向量平行關系求解參數值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.8.D【解析】
根據新增確診曲線的走勢可判斷A選項的正誤;根據新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據新增確診人數的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數超過確診人數,B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數大于新增治愈人數,我國新型冠狀病毒肺炎累計確診人數不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數據處理能力,屬于基礎題.9.A【解析】
根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.10.D【解析】
試題分析:把函數圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數的圖象與性質.11.C【解析】
根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.12.C【解析】
設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用兩角和的正切公式結合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結合弦化切思想求出和的值,進而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點睛】本題主要考查三角函數值的計算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應用,難度不大.14.【解析】
根據題意計算,解得答案.【詳解】,故,解得.故答案為:.【點睛】本題考查了向量的數量積,意在考查學生的計算能力.15.【解析】
利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現邊角互化,屬基礎題.16.【解析】
設雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設雙曲線的左焦點為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點睛】本題考查雙曲線定義及其性質,涉及到求余弦型函數的值域,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)是,【解析】
(1)設,根據條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.18.(1)(2)【解析】
(1)由數列是等差數列,所以,解得,又由,解得,即可求得數列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數列的前n項和.【詳解】(1)由題意,數列是等差數列,所以,又,,由,得,所以,解得,所以數列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數列的項數,能較好的考查考生的數形結合思想、邏輯思維能力及基本計算能力等.19.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數,屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.20.(1);(2)①82,②分布列見解析,【解析】
(1)從20人中任取3人共有種結果,恰有1人成績“優(yōu)秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農村個人地基使用權轉讓及宅基地置換合同3篇
- 2025年農村堰塘生態(tài)農業(yè)與鄉(xiāng)村旅游合作開發(fā)合同
- 2025年度員工薪酬福利及晉升管理體系工資合同3篇
- 二零二五年度航空航天配件賒銷服務合同3篇
- 二零二五年度數據中心機房租賃協議含網絡及安全服務3篇
- 二零二五年度戀愛關系維系與責任分配協議3篇
- 二零二五年度企業(yè)年會禮品定制及派發(fā)合同3篇
- 2025合同樣例項目工程建設合作合同范本
- 二零二五年度養(yǎng)殖產業(yè)鏈供應鏈金融服務合同書人3篇
- 2025年度新材料研發(fā)營銷策劃合作協議3篇
- 部編版一年級上冊語文期末試題含答案
- 2025屆東莞東華高級中學高一生物第一學期期末考試試題含解析
- 新疆巴音郭楞蒙古自治州庫爾勒市2024-2025學年高一生物上學期期末考試試題
- 軍事理論(上海財經大學版)學習通超星期末考試答案章節(jié)答案2024年
- 老兵和軍馬(2023年河南中考語文試卷記敘文閱讀題及答案)
- 非人力資源管理者的人力資源管理
- 物理-福建省福州市2024-2025學年高三年級上學期第一次質量檢測(福州一檢)試題和答案
- 新課標背景下:初中生物學跨學科主題學習課程設計與教學實施
- 人音版音樂五年級下冊獨唱《打起手鼓唱起歌》說課稿
- (高清版)AQ 2001-2018 煉鋼安全規(guī)程
- 單位委托員工辦理水表業(yè)務委托書
評論
0/150
提交評論