中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題18 轉(zhuǎn)化的數(shù)學(xué)思想在壓軸題中的應(yīng)用(解析版)_第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題18 轉(zhuǎn)化的數(shù)學(xué)思想在壓軸題中的應(yīng)用(解析版)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題18 轉(zhuǎn)化的數(shù)學(xué)思想在壓軸題中的應(yīng)用(解析版)_第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題18 轉(zhuǎn)化的數(shù)學(xué)思想在壓軸題中的應(yīng)用(解析版)_第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專練專題18 轉(zhuǎn)化的數(shù)學(xué)思想在壓軸題中的應(yīng)用(解析版)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題18轉(zhuǎn)化的數(shù)學(xué)思想在壓軸題中的應(yīng)用轉(zhuǎn)化思想在數(shù)學(xué)壓軸題中應(yīng)用比較廣泛,例如在幾何壓軸題中,多應(yīng)用轉(zhuǎn)化思想,具體表現(xiàn)為利用平移、旋轉(zhuǎn)、翻折、全等等圖形變換或者等量變換將未知的問題轉(zhuǎn)化為已知問題,將復(fù)雜的問題轉(zhuǎn)化為簡單的問題。 (2022·山東煙臺·統(tǒng)考中考真題)(1)【問題呈現(xiàn)】如圖1,△ABC和△ADE都是等邊三角形,連接BD,CE.求證:BD=CE.(2)【類比探究】如圖2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.連接BD,CE.請直接寫出SKIPIF1<0的值.(3)【拓展提升】如圖3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.連接BD,CE.①求SKIPIF1<0的值;②延長CE交BD于點F,交AB于點G.求sin∠BFC的值.(1)證明△BAD≌△CAE,從而得出結(jié)論;(2)證明△BAD∽△CAE,進(jìn)而得出結(jié)果;(3)①先證明△ABC∽△ADE,再證得△CAE∽△BAD,進(jìn)而得出結(jié)果;②在①的基礎(chǔ)上得出∠ACE=∠ABD,進(jìn)而∠BFC=∠BAC,進(jìn)一步得出結(jié)果.【答案】(1)見解析(2)SKIPIF1<0(3)①SKIPIF1<0;②SKIPIF1<0【詳解】(1)證明:∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△ABC和△ADE都是等腰直角三角形,SKIPIF1<0,∠DAE=∠BAC=45°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD∽△CAE,SKIPIF1<0;(3)解:①SKIPIF1<0,∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,SKIPIF1<0,∴∠CAE=∠BAD,∴△CAE∽△BAD,SKIPIF1<0;②由①得:△CAE∽△BAD,∴∠ACE=∠ABD,∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFCSKIPIF1<0.本題考查了等腰三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解決問題的關(guān)鍵是熟練掌握“手拉手”模型及其變形.(2022·山東濰坊·中考真題)【情境再現(xiàn)】甲、乙兩個含SKIPIF1<0角的直角三角尺如圖①放置,甲的直角頂點放在乙斜邊上的高的垂足O處,將甲繞點O順時針旋轉(zhuǎn)一個銳角到圖②位置.小瑩用作圖軟件Geogebra按圖②作出示意圖,并連接SKIPIF1<0,如圖③所示,SKIPIF1<0交SKIPIF1<0于E,SKIPIF1<0交SKIPIF1<0于F,通過證明SKIPIF1<0,可得SKIPIF1<0.請你證明:SKIPIF1<0.【遷移應(yīng)用】延長SKIPIF1<0分別交SKIPIF1<0所在直線于點P,D,如圖④,猜想并證明SKIPIF1<0與SKIPIF1<0的位置關(guān)系.【拓展延伸】小亮將圖②中的甲、乙換成含SKIPIF1<0角的直角三角尺如圖⑤,按圖⑤作出示意圖,并連接SKIPIF1<0,如圖⑥所示,其他條件不變,請你猜想并證明SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系.證明SKIPIF1<0,即可得出結(jié)論;通過SKIPIF1<0,可以求出SKIPIF1<0,得出結(jié)論SKIPIF1<0;證明SKIPIF1<0,得出SKIPIF1<0,得出結(jié)論;【答案】證明見解析;垂直;SKIPIF1<0【詳解】證明:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;遷移應(yīng)用:SKIPIF1<0,證明:SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0;拓展延伸:SKIPIF1<0,證明:在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由上一問題可知,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.本題考查旋轉(zhuǎn)變換,涉及知識點:全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì)、銳角三角函數(shù)、等角的余角相等,解題關(guān)鍵結(jié)合圖形靈活應(yīng)用相關(guān)的判定與性質(zhì).(2022·廣西貴港·中考真題)已知:點C,D均在直線l的上方,SKIPIF1<0與SKIPIF1<0都是直線l的垂線段,且SKIPIF1<0在SKIPIF1<0的右側(cè),SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相交于點O.(1)如圖1,若連接SKIPIF1<0,則SKIPIF1<0的形狀為______,SKIPIF1<0的值為______;(2)若將SKIPIF1<0沿直線l平移,并以SKIPIF1<0為一邊在直線l的上方作等邊SKIPIF1<0.①如圖2,當(dāng)SKIPIF1<0與SKIPIF1<0重合時,連接SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的長;②如圖3,當(dāng)SKIPIF1<0時,連接SKIPIF1<0并延長交直線l于點F,連接SKIPIF1<0.求證:SKIPIF1<0.(1)過點C作CH⊥BD于H,可得四邊形ABHC是矩形,即可求得AC=BH,進(jìn)而可判斷△BCD的形狀,AC、BD都垂直于l,可得△AOC∽△BOD,根據(jù)三角形相似的性質(zhì)即可求解.(2)①過點E作SKIPIF1<0于點H,AC,BD均是直線l的垂線段,可得SKIPIF1<0,根據(jù)等邊三角形的性質(zhì)可得SKIPIF1<0,再利用勾股定理即可求解.②連接SKIPIF1<0,根據(jù)SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0是等邊三角形,把SKIPIF1<0旋轉(zhuǎn)得SKIPIF1<0,根據(jù)30°角所對的直角邊等于斜邊的一般得到SKIPIF1<0,則可得SKIPIF1<0,根據(jù)三角形相似的性質(zhì)即可求證結(jié)論.【答案】(1)等腰三角形,SKIPIF1<0(2)①SKIPIF1<0;②見解析【詳解】(1)解:過點C作CH⊥BD于H,如圖所示:∵AC⊥l,DB⊥l,CH⊥BD,∴∠CAB=∠ABD=∠CHB=90°,∴四邊形ABHC是矩形,∴AC=BH,又∵BD=2AC,∴AC=BH=DH,且CH⊥BD,∴SKIPIF1<0的形狀為等腰三角形,∵AC、BD都垂直于l,∴SKIPIF1<0,∴△AOC∽△BOD,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故答案為:等腰三角形,SKIPIF1<0.(2)①過點E作SKIPIF1<0于點H,如圖所示:∵AC,BD均是直線l的垂線段,∴SKIPIF1<0,∵SKIPIF1<0是等邊三角形,且SKIPIF1<0與SKIPIF1<0重合,∴∠EAD=60°,∴SKIPIF1<0,∴SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,AE=6在SKIPIF1<0中,SKIPIF1<0,又由(1)知SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,∴在SKIPIF1<0中,由勾股定理得:SKIPIF1<0.②連接SKIPIF1<0,如圖3所示:∵SKIPIF1<0,∴SKIPIF1<0,∵由(1)知SKIPIF1<0是等腰三角形,∴SKIPIF1<0是等邊三角形,又∵SKIPIF1<0是等邊三角形,∴SKIPIF1<0繞點D順時針旋轉(zhuǎn)SKIPIF1<0后與SKIPIF1<0重合,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.本題考查了矩形的判定及性質(zhì)、三角形相似的判定及性質(zhì)、等邊三角形的判定及性質(zhì)、勾股定理的應(yīng)用,熟練掌握三角形相似的判定及性質(zhì)和勾股定理的應(yīng)用,巧妙借助輔助線是解題的關(guān)鍵.1.(2022·山東濟(jì)寧·??级#┤鐖D1,正方形SKIPIF1<0對角線SKIPIF1<0、SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為正方形SKIPIF1<0邊SKIPIF1<0、SKIPIF1<0上的點,SKIPIF1<0交于點SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點.(1)請直接寫出SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系(2)若將SKIPIF1<0繞點SKIPIF1<0旋轉(zhuǎn)到圖2所示位置時,(1)中的結(jié)論是否成立,若成立請證明;若不成立,請說明理由;(3)若SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0繞點SKIPIF1<0旋轉(zhuǎn)過程中,直接寫出點SKIPIF1<0與點SKIPIF1<0的最大距離______.【答案】(1)SKIPIF1<0(2)成立,證明見解析(3)SKIPIF1<0【思路分析】(1)如圖1,連接SKIPIF1<0,由正方形的性質(zhì)可知,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可知SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0是等腰直角三角形,則SKIPIF1<0,由N為SKIPIF1<0中點,可知SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的中位線,根據(jù)中位線的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理可求得SKIPIF1<0;(2)如圖2,連接SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0交于點SKIPIF1<0,證明SKIPIF1<0,則,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0中,由三角形內(nèi)角和求得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的中位線,根據(jù)中位線的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理可求得SKIPIF1<0;(3)由題意知,SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運動,如圖3,由題意知,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線時,SKIPIF1<0取最大與最小值,根據(jù)二者的差為SKIPIF1<0的直徑計算求解即可.【詳解】(1)解:SKIPIF1<0.如圖1,連接SKIPIF1<0,由正方形的性質(zhì)得,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為SKIPIF1<0的中點,且SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,SKIPIF1<0,∵N為SKIPIF1<0中點,∴SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的中位線,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得SKIPIF1<0,∴SKIPIF1<0.(2)解:成立.證明如下:如圖2,連接SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0交于點SKIPIF1<0,由(1)知SKIPIF1<0,SKIPIF1<0,由正方形的性質(zhì)得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點,N為SKIPIF1<0中點,∴SKIPIF1<0和SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0的中位線,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由勾股定理得SKIPIF1<0,∴SKIPIF1<0.(3)解:由題意知,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運動,如圖3,由題意知,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線時,SKIPIF1<0取最大與最小值,且最大與最小的差為SKIPIF1<0的直徑SKIPIF1<0,∴點M與點C的最大距離和最小距離的差為SKIPIF1<0.故答案為∶SKIPIF1<02.(2022·湖北省直轄縣級單位·??家荒#┤鐖D1,在SKIPIF1<0中,SKIPIF1<0,過點A作直線SKIPIF1<0,使SKIPIF1<0,過點B作SKIPIF1<0于點N,過點C作SKIPIF1<0于點M.(1)猜想SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系,并說明理由;(2)求證:SKIPIF1<0;(3)如圖2,連接SKIPIF1<0交SKIPIF1<0于點G,若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)SKIPIF1<0,理由見解析(2)證明見解析(3)SKIPIF1<0【思路分析】(1)根據(jù)直角三角形兩銳角互余得到SKIPIF1<0,再由平角的定義得到SKIPIF1<0,由此即可推出結(jié)論;(2)如圖所示,過點C作SKIPIF1<0于D,證明SKIPIF1<0,SKIPIF1<0,再證明SKIPIF1<0四點共圓,得到SKIPIF1<0,進(jìn)而證明SKIPIF1<0,得到SKIPIF1<0,由此即可證明結(jié)論;(3)如圖所示,過點N作SKIPIF1<0于E,過點C作SKIPIF1<0于H,則四邊形SKIPIF1<0是矩形,得到SKIPIF1<0,再由全等三角形的性質(zhì)和三線合一定理得到,SKIPIF1<0,證明SKIPIF1<0,推出SKIPIF1<0,利用勾股定理求出SKIPIF1<0,證明SKIPIF1<0,求出SKIPIF1<0,SKIPIF1<0,進(jìn)而求出SKIPIF1<0,則SKIPIF1<0.【詳解】(1)解:SKIPIF1<0,理由如下;∵SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)證明:如圖所示,過點C作SKIPIF1<0于D,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0四點共圓,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:如圖所示,過點N作SKIPIF1<0于E,過點C作SKIPIF1<0于H,則四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.3.(2021·北京·一模)在正方形SKIPIF1<0中,點E在射線SKIPIF1<0上(不與點B、C重合),連接SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0繞點E逆時針旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,連接SKIPIF1<0.(1)如圖1,點E在SKIPIF1<0邊上.①依題意補(bǔ)全圖1;②若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長;(2)如圖2,點E在SKIPIF1<0邊的延長線上,用等式表示線段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之間的數(shù)量關(guān)系,并證明.【答案】(1)①見解析;②SKIPIF1<0(2)SKIPIF1<0,證明見解析【思路分析】(1)①根據(jù)題意作圖即可;②過點F作SKIPIF1<0,交SKIPIF1<0的延長線于H,證明SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,利用勾股定理即可求解;(2)過點F作SKIPIF1<0,交SKIPIF1<0的延長線于H,證明SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,由此利用勾股定理求解即可.【詳解】(1)①如圖所示,即為所求;②如圖所示,過點F作SKIPIF1<0,交SKIPIF1<0的延長線于H,∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴在SKIPIF1<0中,SKIPIF1<0.(2)結(jié)論:SKIPIF1<0,理由如下:過點F作SKIPIF1<0,交SKIPIF1<0的延長線于H,∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0和SKIPIF1<0都是等腰直角三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.4.(2021·安徽·統(tǒng)考三模)已知:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且點SKIPIF1<0,SKIPIF1<0分別在矩形SKIPIF1<0的邊SKIPIF1<0,SKIPIF1<0上.(1)如圖SKIPIF1<0,當(dāng)點SKIPIF1<0在SKIPIF1<0上時,求證:SKIPIF1<0;(2)如圖SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0與SKIPIF1<0相交于點SKIPIF1<0,連接SKIPIF1<0,求證:SKIPIF1<0;(3)如圖SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0【答案】(1)詳見解析(2)詳見解析(3)詳見解析【思路分析】SKIPIF1<0先用同角的余角相等,判斷出SKIPIF1<0,即可得出結(jié)論;SKIPIF1<0先判斷出SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,進(jìn)而判斷出SKIPIF1<0,即可得出結(jié)論;SKIPIF1<0先判斷出SKIPIF1<0,SKIPIF1<0,進(jìn)而判斷出SKIPIF1<0,得出SKIPIF1<0,進(jìn)而得出SKIPIF1<0,判斷出SKIPIF1<0,即可得出結(jié)論.【詳解】(1)證明:SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0;(2)證明:如圖SKIPIF1<0,延長SKIPIF1<0,SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)證明:如圖SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延長線于SKIPIF1<0,SKIPIF1<0,同SKIPIF1<0的方法得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.5.(2022·江蘇揚州·??既#┰诰匦蜸KIPIF1<0中,SKIPIF1<0,【問題發(fā)現(xiàn)】(1)如圖1,E為邊SKIPIF1<0上的一個點,連接SKIPIF1<0,過點C作SKIPIF1<0的垂線交SKIPIF1<0于點F,試猜想SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系并說明理由.【類比探究】(2)如圖2,G為邊SKIPIF1<0上的一個點,E為邊SKIPIF1<0延長線上的一個點,連接SKIPIF1<0交SKIPIF1<0于點H,過點C作SKIPIF1<0的垂線交SKIPIF1<0于點F,試猜想SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系并說明理由.【拓展延伸】(3)如圖3,點E從點B出發(fā)沿射線SKIPIF1<0運動,連接SKIPIF1<0,過點B作SKIPIF1<0的垂線交射線SKIPIF1<0于點F,過點E作SKIPIF1<0的平行線,過點F作SKIPIF1<0的平行線,兩平行線交于點H,連接SKIPIF1<0,在點E的運動的路程中,線段SKIPIF1<0的長度是否存在最小值?若存在,求出線段SKIPIF1<0長度的最小值;若不存在,請說明理由.【答案】(1)SKIPIF1<0,理由見解析(2)SKIPIF1<0,理由見解析(3)存在,SKIPIF1<0長度的最小值為SKIPIF1<0【思路分析】(1)證明SKIPIF1<0,即可得解;(2)過點SKIPIF1<0作SKIPIF1<0的垂線交SKIPIF1<0于點SKIPIF1<0,證明SKIPIF1<0,即可得解;(3)過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,則四邊形SKIPIF1<0是矩形,證明SKIPIF1<0,得出SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0,得出SKIPIF1<0在SKIPIF1<0上運動,當(dāng)SKIPIF1<0時,SKIPIF1<0最小,進(jìn)而求得SKIPIF1<0,根據(jù)SKIPIF1<0SKIPIF1<0,即可求解.【詳解】(1)解:SKIPIF1<0,理由如下:∵四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:SKIPIF1<0,理由如下:過點SKIPIF1<0作SKIPIF1<0的垂線交SKIPIF1<0于點SKIPIF1<0,如圖所示:則四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(3)存在,理由如下,如圖,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,則四邊形SKIPIF1<0是矩形,∵SKIPIF1<0∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上運動,∴當(dāng)SKIPIF1<0時,SKIPIF1<0最小,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0長度的最小值為SKIPIF1<0.6.(2022·山東濟(jì)南·模擬)如圖SKIPIF1<0,已知SKIPIF1<0為SKIPIF1<0的直徑,點SKIPIF1<0為SKIPIF1<0的中點,點SKIPIF1<0在SKIPIF1<0上,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0與SKIPIF1<0相交于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)如圖2,過點C作SKIPIF1<0的垂線,分別與SKIPIF1<0,SKIPIF1<0,SKIPIF1<0相交于點F、G、H,求證:SKIPIF1<0;(3)如圖3,在(2)的條件下,連接SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0的面積等于3,求SKIPIF1<0的長.【答案】(1)見解析(2)見解析(3)SKIPIF1<0【思路分析】(1)連接SKIPIF1<0,由SKIPIF1<0,推出SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,推出SKIPIF1<0,SKIPIF1<0,推出SKIPIF1<0;(2)只要證明SKIPIF1<0,即可推出SKIPIF1<0;(3)由SKIPIF1<0,推出SKIPIF1<0,由SKIPIF1<0,推出SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論