版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題20分類(lèi)討論思想在壓軸題中的應(yīng)用分類(lèi)討論思想是一個(gè)非常重要的數(shù)學(xué)思想,在中考數(shù)學(xué)壓軸題中考查頻繁,例如在解決中考?jí)狠S題中的存在性問(wèn)題時(shí),要用到分類(lèi)討論思想:1.在解決等腰三角形存在性問(wèn)題時(shí),需要討論腰和底的多種情況;2.在解決直角三角形存在性問(wèn)題時(shí),需要對(duì)直角的情況進(jìn)行討論;3.在解決平行四邊形和矩形、菱形、正方形的存在性時(shí),需要對(duì)鄰邊或?qū)叺那闆r進(jìn)行討論;4.在解決相似三角形存在性問(wèn)題時(shí),需要對(duì)對(duì)應(yīng)邊和對(duì)應(yīng)角進(jìn)行分類(lèi)討論;5.壓軸題中其他的問(wèn)題,例如線段的數(shù)量和位置關(guān)系等,有時(shí)也需要進(jìn)行分類(lèi)討論。 (2022·遼寧阜新·統(tǒng)考中考真題)如圖,已知二次函數(shù)SKIPIF1<0的圖像交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.(1)求這個(gè)二次函數(shù)的表達(dá)式;(2)如圖SKIPIF1<0,點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),以每秒SKIPIF1<0個(gè)單位長(zhǎng)度的速度沿線段SKIPIF1<0向點(diǎn)SKIPIF1<0運(yùn)動(dòng),點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),以每秒SKIPIF1<0個(gè)單位長(zhǎng)度的速度沿線段SKIPIF1<0向點(diǎn)SKIPIF1<0運(yùn)動(dòng),點(diǎn)SKIPIF1<0,SKIPIF1<0同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為SKIPIF1<0秒(SKIPIF1<0).當(dāng)SKIPIF1<0為何值時(shí),SKIPIF1<0的面積最大?最大面積是多少?(3)已知SKIPIF1<0是拋物線上一點(diǎn),在直線SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)SKIPIF1<0坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(1)用待定系數(shù)法可求得二次函數(shù)的表達(dá)式為;(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0面積為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,即得SKIPIF1<0,由二次函數(shù)性質(zhì)可得當(dāng)SKIPIF1<0秒時(shí),SKIPIF1<0的面積最大,求得其最大面積;(3)由SKIPIF1<0,SKIPIF1<0得直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,分三種情況進(jìn)行討論求解.【答案】(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積最大,最大面積是SKIPIF1<0(3)存在,SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【詳解】(1)將點(diǎn)SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0中,得SKIPIF1<0,解這個(gè)方程組得SKIPIF1<0,SKIPIF1<0二次函數(shù)的表達(dá)式為SKIPIF1<0;(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,如圖:設(shè)SKIPIF1<0面積為SKIPIF1<0,根據(jù)題意得:SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積最大,最大面積是SKIPIF1<0;(3)存在點(diǎn)SKIPIF1<0,使以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形是平行四邊形,理由如下:由SKIPIF1<0,SKIPIF1<0得直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0是對(duì)角線,則SKIPIF1<0,SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,解得SKIPIF1<0與SKIPIF1<0重合,舍去SKIPIF1<0或SKIPIF1<0,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0為對(duì)角線,則SKIPIF1<0,SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,解得SKIPIF1<0舍去SKIPIF1<0或SKIPIF1<0,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0為對(duì)角線,則SKIPIF1<0,SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,綜上所述,SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.本題考查二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法,三角形面積,平行四邊形的性質(zhì)及應(yīng)用,解題的關(guān)鍵是用含字母的式子表示相關(guān)點(diǎn)的坐標(biāo)和相關(guān)線段的長(zhǎng)度.(2022·湖南湘潭·統(tǒng)考中考真題)已知拋物線SKIPIF1<0.(1)如圖①,若拋物線圖象與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交點(diǎn)SKIPIF1<0.連接SKIPIF1<0.①求該拋物線所表示的二次函數(shù)表達(dá)式;②若點(diǎn)SKIPIF1<0是拋物線上一動(dòng)點(diǎn)(與點(diǎn)SKIPIF1<0不重合),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,與線段SKIPIF1<0交于點(diǎn)SKIPIF1<0.是否存在點(diǎn)SKIPIF1<0使得點(diǎn)SKIPIF1<0是線段SKIPIF1<0的三等分點(diǎn)?若存在,請(qǐng)求出點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(2)如圖②,直線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,同時(shí)與拋物線SKIPIF1<0交于點(diǎn)SKIPIF1<0,以線段SKIPIF1<0為邊作菱形SKIPIF1<0,使點(diǎn)SKIPIF1<0落在SKIPIF1<0軸的正半軸上,若該拋物線與線段SKIPIF1<0沒(méi)有交點(diǎn),求SKIPIF1<0的取值范圍.(1)①直接用待定系數(shù)法求解;②先求出直線AB的解析式,設(shè)點(diǎn)M(m,m-3)點(diǎn)P(m,m2-2m-3)若點(diǎn)SKIPIF1<0是線段SKIPIF1<0的三等分點(diǎn),則SKIPIF1<0或SKIPIF1<0,代入求解即可;(2)先用待定系數(shù)法求出n的值,再利用勾股定理求出CD的長(zhǎng)為5,因?yàn)樗倪呅蜟DFE是菱形,由此得出點(diǎn)E的坐標(biāo).再根據(jù)該拋物線與線段SKIPIF1<0沒(méi)有交點(diǎn),分兩種情況(CE在拋物線內(nèi)和CE在拋物線右側(cè))進(jìn)行討論,求出b的取值范圍.【答案】(1)①SKIPIF1<0,②存在,點(diǎn)P坐標(biāo)為(2,-3)或(SKIPIF1<0,-SKIPIF1<0),理由見(jiàn)解析(2)b<SKIPIF1<0或b>SKIPIF1<0【詳解】(1)①解:把SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0②解:存在,理由如下,設(shè)直線AB的解析式為y=kx+b,把SKIPIF1<0,SKIPIF1<0代入,得SKIPIF1<0,解得SKIPIF1<0,∴直線AB的解析式為y=x-3,設(shè)點(diǎn)M(m,m-3)、點(diǎn)P(m,m2-2m-3)若點(diǎn)SKIPIF1<0是線段SKIPIF1<0的三等分點(diǎn),則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,解得:m=2或m=SKIPIF1<0或m=3,經(jīng)檢驗(yàn),m=3是原方程的增根,故舍去,∴m=2或m=SKIPIF1<0∴點(diǎn)P坐標(biāo)為(2,-3)或(SKIPIF1<0,-SKIPIF1<0)(2)解:把點(diǎn)D(-3,0)代入直線SKIPIF1<0,解得n=4,∴直線SKIPIF1<0,當(dāng)x=0時(shí),y=4,即點(diǎn)C(0,4)∴CD=SKIPIF1<0=5,∵四邊形CDFE是菱形,∴CE=EF=DF=CD=5,∴點(diǎn)E(5,4)∵點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,∴(-3)2-3b+c=0,∴c=3b-9,∴SKIPIF1<0,∵該拋物線與線段SKIPIF1<0沒(méi)有交點(diǎn),分情況討論當(dāng)CE在拋物線內(nèi)時(shí)52+5b+3b-9<4解得:b<SKIPIF1<0當(dāng)CE在拋物線右側(cè)時(shí),3b-9>4解得:b>SKIPIF1<0綜上所述,b<SKIPIF1<0或b>SKIPIF1<0此題考查了二次函數(shù)和一次函數(shù)以及圖形的綜合,解題的關(guān)鍵是數(shù)形結(jié)合和分情況討論.1.(2023·安徽宿州·統(tǒng)考一模)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為SKIPIF1<0,SKIPIF1<0分別落在x軸和y軸上,將SKIPIF1<0繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相交于點(diǎn)F,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過(guò)點(diǎn)F,交SKIPIF1<0于點(diǎn)G.(1)求k的值.(2)連接SKIPIF1<0,則圖中是否存在與SKIPIF1<0相似的三角形?若存在,請(qǐng)把它們一一找出來(lái),并選其中一種進(jìn)行證明;若不存在,請(qǐng)說(shuō)明理由.(3)點(diǎn)M在直線SKIPIF1<0上,N是平面內(nèi)一點(diǎn),當(dāng)四邊形SKIPIF1<0是正方形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).【答案】(1)SKIPIF1<0(2)存在,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;證明見(jiàn)解析(3)SKIPIF1<0或SKIPIF1<0【思路分析】(1)根據(jù)矩形及旋轉(zhuǎn)的性質(zhì)得出SKIPIF1<0,再由相似三角形的判定和性質(zhì)得出點(diǎn)F的坐標(biāo)為SKIPIF1<0,代入解析式求解即可;(2)根據(jù)題意得出相似三角形,再由相似三角形的判定證明即可;(3)由(2)及正方形的判定得當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0是正方形,分兩種情況分析:當(dāng)點(diǎn)M在點(diǎn)F上方時(shí),當(dāng)點(diǎn)M在點(diǎn)F下方時(shí),分別利用全等三角形的判定和性質(zhì)確定點(diǎn)M的坐標(biāo),再根據(jù)正方形的性質(zhì)即可求出點(diǎn)N的坐標(biāo).【詳解】(1)解:∵四邊形SKIPIF1<0為矩形,點(diǎn)B的坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0是SKIPIF1<0旋轉(zhuǎn)得到的,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴點(diǎn)F的坐標(biāo)為SKIPIF1<0.∵SKIPIF1<0的圖象經(jīng)過(guò)點(diǎn)F,∴SKIPIF1<0,解得SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.選SKIPIF1<0.證明:∵點(diǎn)G在AB上,∴點(diǎn)G的橫坐標(biāo)為8,∴點(diǎn)G的坐標(biāo)為SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.(3)由(2)知SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0是正方形,當(dāng)點(diǎn)M在點(diǎn)F上方時(shí),如圖所示:過(guò)點(diǎn)M作SKIPIF1<0軸,交SKIPIF1<0于點(diǎn)L,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵點(diǎn)G的坐標(biāo)為SKIPIF1<0,∴設(shè)點(diǎn)SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0;當(dāng)點(diǎn)M在點(diǎn)F下方時(shí),如圖所示:過(guò)點(diǎn)M作SKIPIF1<0軸,交SKIPIF1<0延長(zhǎng)線于點(diǎn)L,同理可得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵點(diǎn)G的坐標(biāo)為SKIPIF1<0,∴設(shè)點(diǎn)SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,綜上可得:點(diǎn)N的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.2.(2022·河南鄭州·河南省實(shí)驗(yàn)中學(xué)??寄M)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為邊SKIPIF1<0上一點(diǎn),SKIPIF1<0為直線SKIPIF1<0上一點(diǎn),連SKIPIF1<0、SKIPIF1<0,交于點(diǎn)SKIPIF1<0.(1)如圖1,若SKIPIF1<0,SKIPIF1<0點(diǎn)在線段SKIPIF1<0上,且SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0,求證:SKIPIF1<0;(2)如圖2,若SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的值;(3)如圖3,若SKIPIF1<0.若SKIPIF1<0,將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)到SKIPIF1<0,并且使得SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直接寫(xiě)出SKIPIF1<0=______.【答案】(1)見(jiàn)詳解(2)SKIPIF1<0(3)SKIPIF1<0或4【思路分析】(1)由題意可證SKIPIF1<0為等邊三角形,再根據(jù)“SKIPIF1<0”證明SKIPIF1<0,可得SKIPIF1<0,由三角形外角的性質(zhì)和直角三角形兩銳角互余可得SKIPIF1<0,然后由“直角三角形中30度角所對(duì)的直角邊等于斜邊的一半”即可證明SKIPIF1<0;(2)延長(zhǎng)SKIPIF1<0至SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,由等腰三角形的性質(zhì)可得SKIPIF1<0,可證點(diǎn)SKIPIF1<0四點(diǎn)共圓,進(jìn)而可得SKIPIF1<0,SKIPIF1<0,通過(guò)證明SKIPIF1<0,可得SKIPIF1<0,即可求解;(3)分兩種情況討論:①當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,由等邊三角形的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由“SKIPIF1<0”可證明SKIPIF1<0,可推導(dǎo)SKIPIF1<0,再證明SKIPIF1<0,可得SKIPIF1<0,即可求解;②當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0的延長(zhǎng)線上時(shí),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,設(shè)SKIPIF1<0,由等邊三角形的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,即可推導(dǎo)SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,即可求解.【詳解】(1)證明:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:如下圖,延長(zhǎng)SKIPIF1<0至SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0四點(diǎn)共圓,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0;(3)解:①如下圖,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0為等邊三角形,且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)到SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;②如下圖,當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0的延長(zhǎng)線上時(shí),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,∵將線段SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)到SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,∵SKIPIF1<0為等邊三角形,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,
∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0或4.3.(2022·吉林長(zhǎng)春·模擬)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.點(diǎn)P從點(diǎn)B出發(fā),沿SKIPIF1<0以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿折線SKIPIF1<0以每秒5個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到達(dá)點(diǎn)A時(shí),點(diǎn)Q停止1秒,然后繼續(xù)運(yùn)動(dòng).分別連接SKIPIF1<0、SKIPIF1<0.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)求點(diǎn)A與SKIPIF1<0之間的距離;(2)當(dāng)SKIPIF1<0時(shí),求t的值;(3)當(dāng)SKIPIF1<0為鈍角三角形時(shí),求t的取值范圍;(4)點(diǎn)P關(guān)于直線SKIPIF1<0的對(duì)稱(chēng)點(diǎn)是點(diǎn)D,連接SKIPIF1<0,當(dāng)線段SKIPIF1<0與SKIPIF1<0的某條邊平行時(shí),直接寫(xiě)出t的值.【答案】(1)4(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0;(4)SKIPIF1<0或SKIPIF1<0.【思路分析】(1)如圖1中,作SKIPIF1<0于D.利用等腰三角形的三線合一以及勾股定理求解即可;(2)如圖2,3中,分點(diǎn)Q在線段SKIPIF1<0或線段SKIPIF1<0上兩種情形分別構(gòu)建方程求解即可;(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),SKIPIF1<0,此時(shí)點(diǎn)Q在點(diǎn)A處,觀察圖形可知,SKIPIF1<0時(shí),SKIPIF1<0是鈍角三角形.當(dāng)點(diǎn)Q在SKIPIF1<0上時(shí),SKIPIF1<0時(shí),求出t的值,可得結(jié)論;(4)分兩種情形:如圖4﹣1中,當(dāng)SKIPIF1<0時(shí),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)T.如圖4﹣2中,當(dāng)SKIPIF1<0時(shí),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)T.過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)H,過(guò)點(diǎn)B作SKIPIF1<0于點(diǎn)J.分別構(gòu)建方程求解即可.【詳解】(1)解:如圖1中,作SKIPIF1<0于D.∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,答:點(diǎn)A與SKIPIF1<0之間的距離為4.(2)解:如圖2中,當(dāng)點(diǎn)Q在線段SKIPIF1<0上時(shí),∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0;如圖3中,當(dāng)點(diǎn)Q在線段SKIPIF1<0上時(shí),∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0;綜上所述,滿(mǎn)足條件的t的值為SKIPIF1<0或SKIPIF1<0;(3)解:由題意,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),SKIPIF1<0,此時(shí)點(diǎn)Q在點(diǎn)A處,觀察圖形可知,SKIPIF1<0時(shí),SKIPIF1<0是鈍角三角形.當(dāng)點(diǎn)Q在SKIPIF1<0上時(shí),SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0觀察圖形可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是鈍角三角形.綜上所述,滿(mǎn)足條件的t的值為SKIPIF1<0或SKIPIF1<0;(4)解:如圖4﹣1中,當(dāng)SKIPIF1<0時(shí),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)T.∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0;經(jīng)檢驗(yàn)SKIPIF1<0是分式方程的解,∴SKIPIF1<0.如圖4﹣2中,當(dāng)SKIPIF1<0時(shí),連接SKIPIF1<0交SKIPIF1<0于點(diǎn)T.過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)H,過(guò)點(diǎn)B作SKIPIF1<0于點(diǎn)J.
∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,解得,SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0是分式方程的解,∴SKIPIF1<0綜上所述,模型條件的t的值為SKIPIF1<0或SKIPIF1<0.4.(2022·浙江金華·一模)如圖,在平面直角坐標(biāo)系SKIPIF1<0中,菱形OABC的頂點(diǎn)A在x軸的正半軸上,點(diǎn)C的坐標(biāo)為SKIPIF1<0,點(diǎn)D從原點(diǎn)O出發(fā)沿SKIPIF1<0勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止,點(diǎn)E從點(diǎn)A出發(fā)沿SKIPIF1<0隨D運(yùn)動(dòng),且始終保持SKIPIF1<0.設(shè)運(yùn)動(dòng)時(shí)間為t.(1)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0.(2)若點(diǎn)E在BC邊上,當(dāng)SKIPIF1<0為等腰三角形時(shí),求BE的長(zhǎng).(3)若點(diǎn)D的運(yùn)動(dòng)速度為每秒1個(gè)單位,是否存在這樣的t,使得以點(diǎn)C,D,E為頂點(diǎn)的三角形與SKIPIF1<0相似?若存在,直接寫(xiě)出所有符合條件的t;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)證明見(jiàn)詳解;(2)SKIPIF1<0或1或SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0.【思路分析】(1)利用菱形的性質(zhì),以及平行線的性質(zhì)推出SKIPIF1<0,進(jìn)而得到SKIPIF1<0,利用S.A.S即可證明SKIPIF1<0;(2)先由點(diǎn)C的坐標(biāo)結(jié)合菱形的性質(zhì)可得OC=OA=AB=BC=5,然后再點(diǎn)D的位置在OA和AB上兩種情況解答,然后每一種情況再分①CD=CE、②DC=DE、③EC=ED分別解答即可;(3)根據(jù)第(2)可得點(diǎn)D在線段OA上和點(diǎn)D在線段AB上,然后據(jù)此分兩種情況解答即可.【詳解】(1)證明:∵四邊形SKIPIF1<0是菱形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,即:SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0(SAS).(2)解:點(diǎn)C的坐標(biāo)為SKIPIF1<0,故可知OC=OA=AB=BC=5.①當(dāng)點(diǎn)D在線段OA上時(shí),分三種情況討論:a.若CD=CE時(shí)(如圖1),則SKIPIF1<0,SKIPIF1<0,作SKIPIF1<0,則OM=3,CM=4,DN=NE=2.5,又易知SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;b.若DC=DE時(shí)(如圖2),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)A與D重合,過(guò)D作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.c.若EC=ED時(shí)(如圖3),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)D在OA延長(zhǎng)線上,不符合題意.②當(dāng)點(diǎn)D在線段AB上時(shí),分三種情況討論:a.若CD=CE時(shí)(如圖4),SKIPIF1<0,矛盾,不符合題意;b.若DE=DC時(shí)(如圖4),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)A與D重合,結(jié)論同②,BE=1;c.若EC=ED時(shí)(如圖5),同⑤,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)D作SKIPIF1<0于Q,易知SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.綜上所述:當(dāng)點(diǎn)E在BC邊上時(shí),BE的長(zhǎng)為:SKIPIF1<0或1或SKIPIF1<0.(3)解:(1)當(dāng)D點(diǎn)在線段OA上時(shí),如圖1,當(dāng)SKIPIF1<0時(shí),由①知:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.(2)當(dāng)D點(diǎn)在AB邊上時(shí)(如圖6),可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0(SKIPIF1<0,不符合題意,舍去)或SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0.5.(2022·重慶·模擬)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0交x軸于點(diǎn)A和C(1,0),交y軸于點(diǎn)B(0,3),拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)E,交拋物線于點(diǎn)F.(1)求拋物線的解析式;(2)將線段OE繞著點(diǎn)O沿順時(shí)針?lè)较蛐D(zhuǎn)得到線段SKIPIF1<0,旋轉(zhuǎn)角為α(0°<α<90°),連接SKIPIF1<0,求SKIPIF1<0的最小值;(3)M為平面直角坐標(biāo)系中一點(diǎn),在拋物線上是否存在一點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)存在,SKIPIF1<0,SKIPIF1<0,﹣1,2【思路分析】(1)根據(jù)待定系數(shù)法即可求出解析式;(2)先取SKIPIF1<0的三等分點(diǎn)SKIPIF1<0,得出SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線時(shí)即為最小值;(3)先設(shè)出點(diǎn)SKIPIF1<0的坐標(biāo),根據(jù)矩形的性質(zhì)列出關(guān)于SKIPIF1<0點(diǎn)坐標(biāo)的方程組,即可求出SKIPIF1<0點(diǎn)的坐標(biāo).【詳解】(1)把SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0中,得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,對(duì)稱(chēng)軸SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0△SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0最小為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0;(3)存在,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0以點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)構(gòu)成的四邊形是矩形,SKIPIF1<0是直角三角形,若SKIPIF1<0是斜邊,則SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0是斜邊,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(與點(diǎn)SKIPIF1<0重合,舍去)或SKIPIF1<0,SKIPIF1<0的橫坐標(biāo)是SKIPIF1<0,若SKIPIF1<0是斜邊,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(與點(diǎn)SKIPIF1<0重合,舍去)或SKIPIF1<0,SKIPIF1<0的橫坐標(biāo)為2,綜上SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,2.6.(2022·廣東佛山·校考三模)已知拋物線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)A,SKIPIF1<0在SKIPIF1<0的左側(cè)),交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.(1)求點(diǎn)A的坐標(biāo);(2)若經(jīng)過(guò)點(diǎn)A的直線SKIPIF1<0交拋物線于點(diǎn)SKIPIF1<0.①當(dāng)SKIPIF1<0且SKIPIF1<0時(shí)SKIPIF1<0交線段SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,求SKIPIF1<0的最大值;②當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),設(shè)SKIPIF1<0為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0是拋物線上的動(dòng)點(diǎn),那么以A,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)SKIPIF1<0的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0(2)①SKIPIF1<0;②P點(diǎn)坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【思路分析】(1)令SKIPIF1<0,則SKIPIF1<0,可求SKIPIF1<0點(diǎn)坐標(biāo);(2)①聯(lián)立方程組SKIPIF1<0,求出SKIPIF1<0點(diǎn)坐標(biāo),求出直線SKIPIF1<0的解析式,聯(lián)立方程組SKIPIF1<0,求出SKIPIF1<0點(diǎn)坐標(biāo),過(guò)SKIPIF1<0點(diǎn)作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,則可知SKIPIF1<0,求出SKIPIF1<0,可求SKIPIF1<0,由此可求SKIPIF1<0的最大值;②設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,求出點(diǎn)SKIPIF1<0,分三種情況討論:①當(dāng)SKIPIF1<0為矩形對(duì)角線時(shí),SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0為矩形對(duì)角線時(shí),SKIPIF1<0,SKIPIF1<0;③當(dāng)SKIPIF1<0為矩形對(duì)角線時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0無(wú)解.【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)①SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理得,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0點(diǎn)作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0;②以A,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形能成為矩形,理由如下:SKIPIF1<0,SKIPIF1<0拋物線的對(duì)稱(chēng)軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0為矩形對(duì)角線時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0為矩形對(duì)角線時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;③當(dāng)SKIPIF1<0為矩形對(duì)角線時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版八年級(jí)物理上冊(cè)《3.1溫度》同步測(cè)試題及答案
- 煤礦開(kāi)采區(qū)域地下水污染防治技術(shù)路徑
- 2024屆四川省成都龍泉中學(xué)高考化學(xué)三模試卷含解析
- 2024高中地理第二章自然環(huán)境中的物質(zhì)運(yùn)動(dòng)和能量交換2-1不斷變化的地表形態(tài)內(nèi)力作用與地表形態(tài)學(xué)案湘教版必修1
- 2024高中生物專(zhuān)題2微生物的培養(yǎng)與應(yīng)用課題3分解纖維素的微生物的分離課堂演練含解析新人教版選修1
- 2024高中語(yǔ)文第三單元因聲求氣吟詠詩(shī)韻自主賞析蘇幕遮學(xué)案新人教版選修中國(guó)古代詩(shī)歌散文欣賞
- 2024高考地理一輪復(fù)習(xí)第四章地表形態(tài)的塑造第一講營(yíng)造地表形態(tài)的力量學(xué)案
- 2024高考化學(xué)一輪復(fù)習(xí)第3章自然界及材料家族中的元素第4講海水中的化學(xué)元素學(xué)案魯科版
- 2024高考化學(xué)二輪復(fù)習(xí)示范卷5含解析
- 2024高考地理一輪復(fù)習(xí)四地理計(jì)算專(zhuān)練含解析
- 服務(wù)方案進(jìn)度計(jì)劃質(zhì)量保障措施
- 博物館展覽活動(dòng)應(yīng)急預(yù)案
- 2025年包鋼(集團(tuán))公司招聘筆試參考題庫(kù)含答案解析
- DB32-T 4596-2023 公眾移動(dòng)通信橋梁和隧道覆蓋工程技術(shù)規(guī)范
- 侘寂風(fēng)的色彩搭配藝術(shù)
- 廣西南寧市2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 2024年質(zhì)量工作總結(jié)(3篇)
- 一年級(jí)數(shù)學(xué)口算大全(共1500題)
- 保險(xiǎn)合作框架協(xié)議模板
- 高??蒲许?xiàng)目獎(jiǎng)金分配管理規(guī)定
- 2024房地產(chǎn)抵押反擔(dān)保合同范本
評(píng)論
0/150
提交評(píng)論