版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁云南大學(xué)滇池學(xué)院《機(jī)器學(xué)習(xí)與模式識(shí)別C》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)回歸問題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過程回歸C.嶺回歸D.Lasso回歸2、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項(xiàng)B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行3、在進(jìn)行聚類分析時(shí),有多種聚類算法可供選擇。假設(shè)我們要對(duì)一組客戶數(shù)據(jù)進(jìn)行細(xì)分,以發(fā)現(xiàn)不同的客戶群體。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法需要預(yù)先指定聚類的個(gè)數(shù)K,并通過迭代優(yōu)化來確定聚類中心B.層次聚類算法通過不斷合并或分裂聚類來構(gòu)建聚類層次結(jié)構(gòu)C.密度聚類算法(DBSCAN)可以發(fā)現(xiàn)任意形狀的聚類,并且對(duì)噪聲數(shù)據(jù)不敏感D.所有的聚類算法都能保證得到的聚類結(jié)果是最優(yōu)的,不受初始條件和數(shù)據(jù)分布的影響4、考慮一個(gè)時(shí)間序列預(yù)測(cè)問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以5、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來預(yù)測(cè)股票價(jià)格的走勢(shì)。以下哪種數(shù)據(jù)特征可能對(duì)預(yù)測(cè)結(jié)果幫助較?。ǎ〢.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)6、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以7、無監(jiān)督學(xué)習(xí)算法主要包括聚類和降維等方法。以下關(guān)于無監(jiān)督學(xué)習(xí)算法的說法中,錯(cuò)誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無監(jiān)督學(xué)習(xí)算法的說法錯(cuò)誤的是()A.K均值聚類算法需要預(yù)先指定聚類的個(gè)數(shù)K,并且對(duì)初始值比較敏感B.層次聚類算法可以生成樹形結(jié)構(gòu)的聚類結(jié)果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學(xué)習(xí)算法不需要任何先驗(yàn)知識(shí),完全由數(shù)據(jù)本身驅(qū)動(dòng)8、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問題。以下關(guān)于欠擬合的說法中,錯(cuò)誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡(jiǎn)單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說法錯(cuò)誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會(huì)出現(xiàn)欠擬合問題9、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評(píng)價(jià)指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差10、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測(cè),將遠(yuǎn)離聚類中心的點(diǎn)視為異常,但聚類效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合11、在一個(gè)多標(biāo)簽分類問題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類別。例如,一篇文章可能同時(shí)涉及科技、娛樂和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個(gè)二分類問題,分別進(jìn)行預(yù)測(cè)B.使用一個(gè)單一的分類器,輸出多個(gè)概率值表示屬于各個(gè)類別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決12、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是13、假設(shè)在一個(gè)醫(yī)療診斷的場(chǎng)景中,需要通過機(jī)器學(xué)習(xí)算法來預(yù)測(cè)患者是否患有某種疾病。收集了大量患者的生理指標(biāo)、病史和生活習(xí)慣等數(shù)據(jù)。在選擇算法時(shí),需要考慮模型的準(zhǔn)確性、可解釋性以及對(duì)新數(shù)據(jù)的泛化能力。以下哪種算法可能是最適合的?()A.決策樹算法,因?yàn)樗軌蚯逦卣故緵Q策過程,具有較好的可解釋性,但可能在復(fù)雜數(shù)據(jù)上的準(zhǔn)確性有限B.支持向量機(jī)算法,對(duì)高維數(shù)據(jù)有較好的處理能力,準(zhǔn)確性較高,但模型解釋相對(duì)困難C.隨機(jī)森林算法,由多個(gè)決策樹組成,準(zhǔn)確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)算法,能夠自動(dòng)提取特征,準(zhǔn)確性可能很高,但模型非常復(fù)雜,難以解釋14、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以15、在構(gòu)建一個(gè)圖像識(shí)別模型時(shí),需要對(duì)圖像數(shù)據(jù)進(jìn)行預(yù)處理和增強(qiáng)。如果圖像存在光照不均、噪聲和模糊等問題,以下哪種預(yù)處理和增強(qiáng)技術(shù)組合可能最為有效?()A.直方圖均衡化、中值濾波和銳化B.灰度變換、高斯濾波和圖像翻轉(zhuǎn)C.色彩空間轉(zhuǎn)換、均值濾波和圖像縮放D.對(duì)比度拉伸、雙邊濾波和圖像旋轉(zhuǎn)16、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以17、在進(jìn)行模型選擇時(shí),除了考慮模型的性能指標(biāo),還需要考慮模型的復(fù)雜度和可解釋性。假設(shè)我們有多個(gè)候選模型。以下關(guān)于模型選擇的描述,哪一項(xiàng)是不正確的?()A.復(fù)雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡(jiǎn)單的模型雖然擬合能力有限,但更容易解釋和理解C.對(duì)于一些對(duì)可解釋性要求較高的任務(wù),如醫(yī)療診斷,應(yīng)優(yōu)先選擇復(fù)雜的黑盒模型D.在實(shí)際應(yīng)用中,需要根據(jù)具體問題和需求綜合權(quán)衡模型的性能、復(fù)雜度和可解釋性18、在一個(gè)聚類問題中,需要將一組數(shù)據(jù)點(diǎn)劃分到不同的簇中,使得同一簇內(nèi)的數(shù)據(jù)點(diǎn)相似度較高,不同簇之間的數(shù)據(jù)點(diǎn)相似度較低。假設(shè)我們使用K-Means算法進(jìn)行聚類,以下關(guān)于K-Means算法的初始化步驟,哪一項(xiàng)是正確的?()A.隨機(jī)選擇K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類中心B.選擇數(shù)據(jù)集中前K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類中心C.計(jì)算數(shù)據(jù)點(diǎn)的均值作為初始聚類中心D.以上方法都可以,對(duì)最終聚類結(jié)果沒有影響19、假設(shè)要對(duì)一個(gè)復(fù)雜的數(shù)據(jù)集進(jìn)行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對(duì)非線性結(jié)構(gòu)不敏感C.t-分布隨機(jī)鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計(jì)算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的降維策略20、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說法中,錯(cuò)誤的是:集成學(xué)習(xí)通過組合多個(gè)弱學(xué)習(xí)器來構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說法錯(cuò)誤的是()A.bagging方法通過隨機(jī)采樣訓(xùn)練數(shù)據(jù)來構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過逐步調(diào)整樣本權(quán)重來構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測(cè)結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好21、考慮一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關(guān)的商品或內(nèi)容。在構(gòu)建推薦模型時(shí),可以使用基于內(nèi)容的推薦、協(xié)同過濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內(nèi)容的推薦,利用商品的屬性和用戶的偏好進(jìn)行推薦B.協(xié)同過濾推薦,基于用戶之間的相似性進(jìn)行推薦C.混合推薦,結(jié)合多種推薦方法的優(yōu)點(diǎn)D.以上方法都不合適,無法進(jìn)行有效推薦22、在處理文本分類任務(wù)時(shí),除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)模型也表現(xiàn)出色。假設(shè)我們要對(duì)新聞文章進(jìn)行分類。以下關(guān)于文本分類模型的描述,哪一項(xiàng)是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長(zhǎng)文本時(shí)性能優(yōu)于RNN和CNN,但其計(jì)算復(fù)雜度較高D.深度學(xué)習(xí)模型在文本分類任務(wù)中總是比傳統(tǒng)機(jī)器學(xué)習(xí)算法(如樸素貝葉斯、支持向量機(jī))效果好23、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對(duì)短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對(duì)較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計(jì)算復(fù)雜度較高24、在一個(gè)分類問題中,如果數(shù)據(jù)集中存在多個(gè)類別,且類別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機(jī)25、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,通過投票來決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過程中對(duì)特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對(duì)于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋機(jī)器學(xué)習(xí)中隱私保護(hù)技術(shù)在數(shù)據(jù)共享中的應(yīng)用。2、(本題5分)什么是對(duì)抗防御技術(shù)?常見的對(duì)抗防御方法有哪些?3、(本題5分)解釋機(jī)器學(xué)習(xí)中自監(jiān)督學(xué)習(xí)的概念和方法。4、(本題5分)解釋在自然語言處理中,詞嵌入(WordEmbedding)的概念。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用樸素貝葉斯算法對(duì)用戶的社交媒體發(fā)布內(nèi)容進(jìn)行分類。2、(本題5分)利用生物信息學(xué)算法數(shù)據(jù)挖掘生物信息中的潛在模式。3、(本題5分)利用隨機(jī)森林模型對(duì)用戶的購(gòu)買行為進(jìn)行預(yù)測(cè)。4、(本題5分)構(gòu)建一個(gè)多層感知機(jī)(MLP)對(duì)MNIST手寫數(shù)字?jǐn)?shù)據(jù)集進(jìn)行分類。5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鎘、鉍相關(guān)常用有色金屬項(xiàng)目合作計(jì)劃書
- 2025標(biāo)準(zhǔn)的強(qiáng)制性產(chǎn)品認(rèn)證合同書
- 2025年剛玉瓷平面六通閥項(xiàng)目發(fā)展計(jì)劃
- 2025版荒料銷售與稅收籌劃合同3篇
- 2025版租賃房屋修繕責(zé)任合同樣本2篇
- 2025年乙二醇辛醇糠醇項(xiàng)目合作計(jì)劃書
- 2025版瓦工裝修材料環(huán)保檢測(cè)合同3篇
- 2025年包裝服務(wù)項(xiàng)目合作計(jì)劃書
- 2025版油茶林產(chǎn)業(yè)扶貧與承包合作協(xié)議3篇
- 2025年度市政道路照明設(shè)施維護(hù)承包合同3篇
- DB5334 T 12.5-2024《地理標(biāo)志證明商標(biāo) 香格里拉藏香豬》的第5部分疾病防治
- 辦公樓室內(nèi)裝飾工程施工設(shè)計(jì)方案技術(shù)標(biāo)范本
- 2023年香港華夏杯六年級(jí)競(jìng)賽初賽數(shù)學(xué)試卷
- CJJ122-2017 游泳池給水排水工程技術(shù)規(guī)程
- 高中數(shù)學(xué)放縮法
- 上海市閔行區(qū)2024-2025學(xué)年八年級(jí)(上)期末物理試卷(解析版)
- 人教版三年級(jí)上冊(cè)數(shù)學(xué)期末測(cè)試卷可打印
- 醫(yī)療高級(jí)職稱評(píng)審論文答辯
- 設(shè)計(jì)服務(wù)保障措施方案
- 軟件測(cè)試方案模板(完整版)
- 建筑幕墻工程(鋁板、玻璃、石材)監(jiān)理實(shí)施細(xì)則(全面版)
評(píng)論
0/150
提交評(píng)論