云南醫(yī)藥健康職業(yè)學院《數(shù)字設計表現(xiàn)》2023-2024學年第一學期期末試卷_第1頁
云南醫(yī)藥健康職業(yè)學院《數(shù)字設計表現(xiàn)》2023-2024學年第一學期期末試卷_第2頁
云南醫(yī)藥健康職業(yè)學院《數(shù)字設計表現(xiàn)》2023-2024學年第一學期期末試卷_第3頁
云南醫(yī)藥健康職業(yè)學院《數(shù)字設計表現(xiàn)》2023-2024學年第一學期期末試卷_第4頁
云南醫(yī)藥健康職業(yè)學院《數(shù)字設計表現(xiàn)》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁云南醫(yī)藥健康職業(yè)學院《數(shù)字設計表現(xiàn)》

2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、對于圖像的紋理分析任務,假設要描述和區(qū)分不同類型的紋理,例如木紋和石紋。以下哪種方法可能更有助于準確分析紋理特征?()A.基于統(tǒng)計的方法,計算紋理的灰度共生矩陣B.基于模型的方法,如馬爾可夫隨機場C.僅通過肉眼觀察和主觀描述紋理D.不進行任何紋理分析,直接忽略紋理信息2、在一個基于計算機視覺的無人駕駛系統(tǒng)中,需要對道路場景進行理解和預測,例如判斷前方是否有行人橫穿馬路。為了實現(xiàn)準確的場景理解和預測,以下哪種技術可能是關鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是3、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設醫(yī)學圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉4、在計算機視覺中,目標檢測是一項重要的任務。假設要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用5、在計算機視覺的場景理解任務中,需要對圖像中的物體、關系和上下文進行綜合分析。假設要理解一個室內(nèi)場景的布局和功能,以下哪種信息可能是最關鍵的?()A.物體的形狀和顏色B.物體之間的空間位置關系C.圖像的亮度和對比度D.圖像的拍攝角度6、圖像分割是將圖像分成不同的區(qū)域或對象。假設要對醫(yī)學影像中的腫瘤區(qū)域進行精確分割,以下關于圖像分割方法的描述,正確的是:()A.手動分割是最準確的方法,不需要借助計算機算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學影像分割問題C.深度學習中的全卷積網(wǎng)絡(FCN)及其變體在醫(yī)學圖像分割中具有很大的潛力D.圖像分割的結果只取決于所使用的分割算法,與圖像的預處理無關7、當進行圖像的目標計數(shù)任務時,假設要統(tǒng)計一張圖像中某種物體的數(shù)量,例如統(tǒng)計羊群中的羊的數(shù)量。以下哪種方法可能更準確地完成計數(shù)任務?()A.基于深度學習的目標計數(shù)模型B.手動逐個計數(shù)C.估計圖像中物體的平均大小,然后計算總面積來推算數(shù)量D.隨機猜測物體的數(shù)量8、在計算機視覺的姿態(tài)估計任務中,例如估計人體關節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學習的回歸方法C.基于深度學習的分類方法D.以上都不是9、在計算機視覺的行人重識別任務中,需要在不同攝像頭拍攝的圖像中識別出同一個行人。假設我們要在一個大型商場的監(jiān)控系統(tǒng)中實現(xiàn)行人重識別,以下哪種特征和模型能夠提高識別的準確率和跨攝像頭的泛化能力?()A.基于顏色和紋理的特征B.基于深度學習的全局特征和度量學習C.基于形狀和輪廓的特征D.基于步態(tài)和姿勢的特征10、在一個基于計算機視覺的智能零售系統(tǒng)中,需要對顧客的購物行為進行分析,如拿起商品、放回商品等動作的識別。以下哪種技術在動作識別方面可能發(fā)揮重要作用?()A.光流分析B.目標跟蹤C.動作捕捉D.以上都是11、計算機視覺中的光流計算用于估計圖像中像素的運動。假設要對一個快速運動的物體進行光流估計,同時場景中存在光照變化和噪聲干擾。在這種情況下,以下哪種光流計算方法能夠提供更準確和穩(wěn)定的結果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法12、計算機視覺在衛(wèi)星遙感圖像分析中的應用可以幫助監(jiān)測地球環(huán)境和資源。假設要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關于計算機視覺在衛(wèi)星遙感中的描述,哪一項是不準確的?()A.可以通過圖像分類和分割技術區(qū)分森林、草地和建筑物等不同地物類型B.能夠對多時相的衛(wèi)星圖像進行比較,監(jiān)測森林的生長和砍伐情況C.計算機視覺在衛(wèi)星遙感中的應用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結合地理信息系統(tǒng)(GIS)數(shù)據(jù),進行更深入的空間分析和決策支持13、在計算機視覺的圖像去噪任務中,去除圖像中的噪聲。假設要處理一張被噪聲嚴重污染的天文圖像,以下關于圖像去噪方法的描述,哪一項是不正確的?()A.均值濾波和中值濾波等傳統(tǒng)方法可以在一定程度上去除噪聲,但可能會模糊圖像細節(jié)B.基于小波變換的方法能夠在去除噪聲的同時較好地保留圖像的邊緣和細節(jié)C.深度學習方法通過學習噪聲和干凈圖像之間的映射關系,實現(xiàn)有效的去噪D.圖像去噪可以完全恢復被噪聲破壞的原始圖像信息,沒有任何損失14、當利用計算機視覺進行圖像分類任務,例如區(qū)分不同種類的動物圖片,為了提高模型的泛化能力和防止過擬合,以下哪種技術可能是有效的?()A.數(shù)據(jù)增強B.正則化C.模型融合D.以上都是15、計算機視覺中的表情識別旨在判斷圖像或視頻中人物的表情。假設要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關于表情特征的提取,哪一項是需要重點關注的?()A.提取面部肌肉的細微運動作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關注局部特征D.不進行任何特征提取,直接使用原始圖像進行分類16、計算機視覺在自動駕駛領域發(fā)揮著重要作用。假設一輛自動駕駛汽車正在道路上行駛,需要識別各種交通標志、車輛和行人。以下關于自動駕駛中計算機視覺的描述,哪一項是不正確的?()A.計算機視覺可以通過攝像頭實時獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準確識別不同光照和天氣條件下的交通對象,不受任何干擾C.深度學習算法在自動駕駛的計算機視覺中被廣泛應用,用于目標檢測和語義分割D.計算機視覺需要與其他傳感器(如雷達、激光雷達)的數(shù)據(jù)融合,以提高感知的可靠性17、計算機視覺在工業(yè)檢測中的應用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設一個工廠需要檢測生產(chǎn)線上的零件是否存在缺陷。以下關于工業(yè)檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統(tǒng)對零件進行自動分類和篩選C.工業(yè)檢測中的計算機視覺系統(tǒng)需要高度的穩(wěn)定性和可靠性,對環(huán)境變化不敏感D.計算機視覺在工業(yè)檢測中的應用已經(jīng)非常成熟,不需要人工干預和校驗18、計算機視覺在無人駕駛中的應用需要應對各種復雜的環(huán)境和情況。假設無人駕駛汽車要在惡劣天氣下行駛,以下關于計算機視覺在無人駕駛中的挑戰(zhàn)的描述,哪一項是不正確的?()A.惡劣天氣會影響圖像的質(zhì)量和清晰度,增加目標檢測和識別的難度B.計算機視覺系統(tǒng)需要與其他傳感器(如雷達和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學習模型在惡劣天氣條件下的性能會顯著下降,無法正常工作D.針對惡劣天氣,可以通過數(shù)據(jù)增強和模型優(yōu)化等方法提高計算機視覺系統(tǒng)的魯棒性19、計算機視覺中的圖像增強技術可以改善圖像質(zhì)量。假設要對一張低光照條件下拍攝的圖像進行增強,以下關于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容20、視頻分析是計算機視覺的一個重要領域。假設我們要分析一段監(jiān)控視頻,以檢測異常行為,如打架、盜竊等。對于這種實時性要求較高的視頻分析任務,以下哪種方法更適合用于快速處理和檢測?()A.對每一幀圖像單獨進行分析B.基于光流的方法跟蹤對象運動C.利用深度學習模型直接對視頻進行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除21、在計算機視覺的目標識別任務中,假設要識別不同種類的水果。以下關于應對類內(nèi)差異和類間相似性的策略,哪一項是不正確的?()A.增加訓練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動適應能力22、計算機視覺中的人臉檢測和識別是熱門研究方向。假設要在一個大規(guī)模的人臉數(shù)據(jù)庫中進行快速準確的人臉識別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學習的方法D.基于主成分分析(PCA)的方法23、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關于模型訓練中數(shù)據(jù)標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質(zhì)量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數(shù)據(jù)量過大,標注工作耗時費力24、計算機視覺在文物保護和數(shù)字化中的應用可以幫助記錄和分析文物信息。假設要對一件古老的雕塑進行三維數(shù)字化和表面紋理分析,以下關于文物保護計算機視覺應用的描述,正確的是:()A.傳統(tǒng)的攝影測量方法在文物數(shù)字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質(zhì)對數(shù)字化和分析過程沒有挑戰(zhàn)C.結合多種成像技術和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應用不需要考慮對文物的非接觸性和無損性要求25、計算機視覺中的姿態(tài)估計任務是估計人體或物體在三維空間中的姿態(tài)。假設要估計一個人體模特的姿態(tài)。以下關于姿態(tài)估計的描述,哪一項是不正確的?()A.可以通過關鍵點檢測和關節(jié)角度計算來估計人體姿態(tài)B.深度學習中的卷積神經(jīng)網(wǎng)絡可以直接預測人體姿態(tài)的參數(shù)C.姿態(tài)估計在虛擬現(xiàn)實和增強現(xiàn)實等應用中具有重要作用D.姿態(tài)估計的結果總是非常準確,不受人體遮擋和復雜動作的影響二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述圖像的色彩調(diào)整軟件。2、(本題5分)簡述圖像的伽馬校正方法。3、(本題5分)解釋計算機視覺中的多視圖幾何原理。4、(本題5分)解釋計算機視覺在酒店服務中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某時尚雜志的跨頁廣告設計,思考其如何在有限的頁面空間內(nèi)展現(xiàn)品牌的高端形象和產(chǎn)品細節(jié),吸引讀者關注。2、(本題5分)解讀某科技公司的網(wǎng)站設計,分析其在用戶體驗、視覺風格和信息架構方面的表現(xiàn)。3、(本題5分)研究某珠寶品牌的宣傳海報設計,探討其如何通過視覺傳達展示珠寶的品質(zhì)和設計感。4、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論