2024年滬科版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第1頁(yè)
2024年滬科版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第2頁(yè)
2024年滬科版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第3頁(yè)
2024年滬科版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第4頁(yè)
2024年滬科版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2024年滬科版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷596考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、【題文】若函數(shù)在上是減函數(shù);則實(shí)數(shù)a的取值范圍是。

Ab.c.d.2、已知球的直徑是該球面上的兩點(diǎn),則三棱錐的體積為()A.B.C.D.3、已知函數(shù)f(x)=8+2x﹣x2,那么()A.f(x)是減函數(shù)B.f(x)在(﹣∞,1]上是減函數(shù)C.f(x)是增函數(shù)D.f(x)在(﹣∞,0]上是增函數(shù)4、98和63的最大公約數(shù)是()A.3B.9C.7D.145、點(diǎn)向量若則實(shí)數(shù)的值為()A.5B.6C.7D.86、圓:x2+y2-4x+6y=0和圓:x2+y2-6x=0交于A,B兩點(diǎn),則AB的垂直平分線的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=07、婁脕

是第四象限角,tan婁脕=鈭?512

則sin婁脕=(

)

A.15

B.鈭?15

C.513

D.鈭?513

評(píng)卷人得分二、填空題(共6題,共12分)8、已知A,B是對(duì)立事件,若則P(B)=____.9、函數(shù)的單調(diào)遞減區(qū)間是.10、有一道解三角形的題因紙張破損,有一條件不清,且具體如下:在△ABC中,已知B=,求角A.經(jīng)推斷破損處的條件為三角形一邊的長(zhǎng)度,且答案提示A=請(qǐng)將條件補(bǔ)完整.11、若關(guān)于的不等式的解集則的值為_(kāi)________.12、下面給出了解決問(wèn)題的算法:

S1輸入x

S2若x≤1則執(zhí)行S3;否則執(zhí)行S4

S3使y=2x﹣3

S4使y=x2﹣3x+3

S5輸出y

當(dāng)輸入的值為_(kāi)___時(shí),輸入值與輸出值相等.13、若函數(shù)y=x2+2(a﹣1)x+2在區(qū)間(﹣∞,4]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是____評(píng)卷人得分三、證明題(共9題,共18分)14、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.15、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.16、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.17、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.18、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.19、如圖;過(guò)圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).20、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過(guò)點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.21、已知G是△ABC的重心,過(guò)A、G的圓與BG切于G,CG的延長(zhǎng)線交圓于D,求證:AG2=GC?GD.22、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分四、解答題(共3題,共12分)23、設(shè)集合A={x|-1<x≤2};B={x|0<x<3},求A∩B.

24、m為何值時(shí),f(x)=x2+2mx+3m+4

(1)有且僅有一個(gè)零點(diǎn)。

(2)有兩個(gè)零點(diǎn)且均比-1大.

25、設(shè)集合若求實(shí)數(shù)的值.評(píng)卷人得分五、作圖題(共1題,共7分)26、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.評(píng)卷人得分六、綜合題(共1題,共5分)27、如圖;Rt△ABC的兩條直角邊AC=3,BC=4,點(diǎn)P是邊BC上的一動(dòng)點(diǎn)(P不與B重合),以P為圓心作⊙P與BA相切于點(diǎn)M.設(shè)CP=x,⊙P的半徑為y.

(1)求證:△BPM∽△BAC;

(2)求y與x的函數(shù)關(guān)系式;并確定當(dāng)x在什么范圍內(nèi)取值時(shí),⊙P與AC所在直線相離;

(3)當(dāng)點(diǎn)P從點(diǎn)C向點(diǎn)B移動(dòng)時(shí);是否存在這樣的⊙P,使得它與△ABC的外接圓相內(nèi)切?若存在,求出x;y的值;若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題(共7題,共14分)1、C【分析】【解析】略【解析】【答案】C2、C【分析】【解答】如圖,由于且為球的直徑,所以所以設(shè)為球心,連結(jié)則又因?yàn)槿〉闹悬c(diǎn)連結(jié)則四棱錐的高為的邊上的高,設(shè)為則解得而三棱錐的體積.

3、D【分析】【解答】解:∵函數(shù)f(x)=8+2x﹣x2=﹣(x﹣1)2+9的圖象是開(kāi)口線下的拋物線;對(duì)稱軸為x=1;

故f(x)在(﹣∞;0]上是增函數(shù);

故選:D

【分析】由條件利用二次函數(shù)的圖象和性質(zhì),可得結(jié)論.4、C【分析】【解答】∵98=1×63+35;63=1×35+28,35=1×28+7,28=7×4;

∴98和63的最大公約數(shù)是7.

故選C.

【分析】利用輾轉(zhuǎn)相除法即可求出。5、C【分析】【解答】∵點(diǎn)∴又且∴y-1=2×3,∴y=7,故選C

【分析】?jī)蓚€(gè)向量設(shè)=(x1,y1),=(x2,y2)平行的充要條件是x1y2-x2y1=0容易容易誤寫(xiě)為x1y1-x2y2=0,尤其可能與隨后要學(xué)到的向量垂直的條件混淆,因此要理解并熟記這一公式,并與向量垂直的條件區(qū)分6、C【分析】【解答】圓:x2+y2-4x+6y=0的圓心坐標(biāo)為(2,-3),圓:x2+y2-6x=0的圓心坐標(biāo)為(3,0),由題意可得AB的垂直平分線的方程就是兩圓的圓心所在的直線的方程,由兩點(diǎn)式求得AB的垂直平分線的方程是即3x-y-9=0,故答案為C.

【分析】本題主要考查用兩點(diǎn)式求直線方程的方法,判斷AB的垂直平分線的方程就是兩圓的圓心所在的直線的方程,是解題的關(guān)鍵,屬于基礎(chǔ)題。7、D【分析】解:隆脽婁脕

是第四象限角,tan婁脕=鈭?512=sin婁脕cos偽sin2婁脕+cos2婁脕=1

隆脿sin婁脕=鈭?513

故選D.

根據(jù)tan婁脕=sin婁脕cos偽sin2婁脕+cos2婁脕=1

即可得答案.

三角函數(shù)的基本關(guān)系是三角函數(shù)的基本,是高考必考內(nèi)容.【解析】D

二、填空題(共6題,共12分)8、略

【分析】

已知A,B是對(duì)立事件,若則P(B)=1-P(A)=

故答案為.

【解析】【答案】由于A,B是對(duì)立事件,若則P(B)=1-P(A).

9、略

【分析】試題分析:因?yàn)樗杂煽傻盟院瘮?shù)的遞減區(qū)間為考點(diǎn):三角函數(shù)的性質(zhì).【解析】【答案】10、略

【分析】試題分析:由正弦定理得:或者先由三角形的內(nèi)角和定理得到C=75再用正弦定理得故條件可能為:考點(diǎn):解三角形.【解析】【答案】11、略

【分析】試題分析:由題意得,為方程的兩根,且由得又由得:考點(diǎn):不等式解集與方程根的關(guān)系【解析】【答案】12、3【分析】【解答】解:分析程序中各變量;各語(yǔ)句的作用;

再根據(jù)流程圖所示的順序;可知:

該程序的作用是計(jì)算并輸出分段函數(shù)的函數(shù)值.

當(dāng)輸入的值為x時(shí);輸入值與輸出值相等;

當(dāng)x>1時(shí),若x2﹣3x+3=x;則x=3或x=1(舍去);

當(dāng)x≤1時(shí);若2x﹣3=x,則x=3(舍去)

故答案為3.

【分析】分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算并輸出分段函數(shù)的函數(shù)值,結(jié)合函數(shù)值即可解.13、a≤﹣3【分析】【解答】解:函數(shù)y=x2+2(a﹣1)x+2的圖象是開(kāi)口朝上,且以直線x=1﹣a為對(duì)稱軸的拋物線,若y=x2+2(a﹣1)x+2在區(qū)間(﹣∞;4]上單調(diào)遞減;

則1﹣a≥4;

解得:a≤﹣3;

故答案為:a≤﹣3

【分析】若y=x2+2(a﹣1)x+2在區(qū)間(﹣∞,4]上單調(diào)遞減,則1﹣a≥4,解得答案.三、證明題(共9題,共18分)14、略

【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.15、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;

(3)BF過(guò)圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點(diǎn);

∴cosC==.

答:cosC的值是.

(3)BF過(guò)圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.16、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.17、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.18、略

【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.

(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.19、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=20、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點(diǎn);

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.21、略

【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長(zhǎng)GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長(zhǎng)GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過(guò)A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點(diǎn)共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.22、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.四、解答題(共3題,共12分)23、略

【分析】

因?yàn)榧螦={x|-1<x≤2};B={x|0<x<3};

所以A∩B={x|-1<x≤2}∩{x|0<x<3}={x|0<x≤2}.

【解析】【答案】直接利用交集的運(yùn)算法則求出A∩B即可.

24、略

【分析】

(1)∵f(x)=x2+2mx+3m+4;有且僅有一個(gè)零點(diǎn)。

說(shuō)明二次函數(shù)與x軸只有一個(gè)交點(diǎn);可得。

△=(2m)2-4×(3m+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論