




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
UnravelingMeta-Learning:UnderstandingFeature
RepresentationsforFew-ShotTasks
HarichandanaVejendla
(50478049)
1
2
Definitions
?Meta-Learning:Meta-learningdescribesmachinelearningalgorithmsthatacquireknowledgeandunderstandingfromtheoutcomeofothermachinelearningalgorithms.Theylearnhowtobest
combinethepredictionsfromothermachine-learningalgorithms.
?Few-shotLearning:Few-ShotLearningisaMachineLearningframeworkthatenablesapre-trainedmodeltogeneralizeovernewcategoriesofdatausingonlyafewlabeledsamplesperclass.
?FeatureExtraction:Featureextractionisaprocessofdimensionalityreductionthatinvolvestransformingrawdataintonumericalfeaturesthatcanbeprocessed.
?Featureclustering:Featureclusteringaggregatespointfeaturesintogroupswhosemembersaresimilartoeachotherandnotsimilartomembersofothergroups.
?FeatureRepresentation:RepresentationLearningorfeaturelearningisthesubdisciplineofthe
machinelearningspacethatdealswithextractingfeaturesorunderstandingtherepresentationofadataset.
3
Introduction
?TransferLearning:Pre-trainingamodelonlargeauxiliarydatasetsandthenfine-tuningtheresultingmodelsonthetargettask.Thisisusedforfew-shotlearningsinceonlyafewdatasamplesareavailableinthetarget
domain.
?Transferlearningfromclassicallytrainedmodelsyieldspoorperformanceforfew-shotlearning.Recently,few-shotlearninghasbeenrapidlyimprovedusingmeta-learningmethods.
?Thissuggeststhatthefeaturerepresentationslearnedbymeta-learningmustbefundamentallydifferentfromfeaturerepresentationslearnedthroughconventionaltraining.
?Thispaperunderstandsthedifferencesbetweenfeatureslearnedbymeta-learningandclassicaltraining.
?Basedonthis,thepaperproposessimpleregularizersthatboostfew-shotperformanceappreciably.
4
Meta-LearningFramework
?Inthecontextoffew-shotlearning,theobjectiveofmeta-learningalgorithmsistoproduceanetworkthatquicklyadaptstonewclassesusinglittledata.
?Meta-learningalgorithmsfindparametersthatcanbefine-tunedinafewoptimizationstepsandonafewdatapointsinordertoachievegoodgeneralization.
?Thetaskischaracterizedasn-way,k-shotifthemeta-learningalgorithmmustadapttoclassifydatafromTiafterseeingkexamplesfromeachofthenclassesinTi.
Algorithm
5
6
AlgorithmDescription
?Meta-learningschemestypicallyrelyonbi-leveloptimizationproblemswithaninnerloopandanouterloop.
?Aniterationoftheouterloopinvolvesfirstsamplinga“task,”whichcomprisestwosetsoflabeleddata:thesupportdata,Tis,andthequerydata,Tiq.
?Intheinnerloop,themodelbeingtrainedisfine-tunedusingthesupportdata.
?Fine-tuningproducesnewparametersθi,thatareafunctionoftheoriginalparametersandsupportdata.
?Weevaluatethelossonthequerydataandcomputethegradientsw.r.ttheoriginalparametersθ.Weneedtounrollthefine-tuningstepsandbackpropagatethroughthemtocomputethegradients.
?Finally,theroutinemovesbacktotheouterloop,wherethemeta-learningalgorithmminimizeslossonthequerydatawithrespecttothepre-fine-tunedweights.Basemodelparametersareupdatedusingthe
gradients.
7
Meta-LearningAlgorithms
Avarietyofmeta-learningalgorithmsexist,mostlydifferinginhowtheyarefine-tunedusingthesupportdataduringtheinnerloop:
?MAML:Updatesallnetworkparametersusinggradientdescentduringfine-tuning.
?R2-D2andMetaOptNet:Last-layermeta-learningmethods(onlytrainthelastlayer).Theyfreezethefeatureextractionlayers(featureextractor’sparametersarefrozen)duringtheinnerloop.Onlythelinearclassifierlayeristrainedduringfine-tuning.
?ProtoNet:Last-layermeta-learningmethod.Itclassifiesexamplesbytheproximityoftheirfeaturestothoseofclasscentroids.Theextractedfeaturesareusedtocreateclasscentroidswhichthen
determinethenetwork’sclassboundaries.
8
Few-ShotDatasets
?Mini-ImageNet:ItisaprunedanddownsizedversionoftheImageNetclassificationdataset,
consistingof60,000,84×84RGBcolorimagesfrom100.These100classesaresplitinto64,16,and20classesfortraining,validation,andtestingsets,respectively.
?CIFAR-FSdataset:samplesimagesfromCIFAR-100.CIFAR-FSissplitinthesamewayasmini-ImageNetwith60,00032×32RGBcolorimagesfrom100classesdividedinto64,16,and20
classesfortraining,validation,andtestingsets,respectively.
ComparisonbetweenMeta-LearningandClassicalTrainingModels
?DatasetUsed:1-shotmini-ImageNet
?Classicallytrainedmodelsaretrainedusingcross-entropylossandSGD.
?Commonfine-tuningproceduresareusedforbothmeta-learnedandclassically-trainedmodelsforafaircomparison
?Resultsshowthatmeta-learningmodelsperformbetterthanclassicaltrainingmodelsonfew-shotclassification.
?Thisperformanceadvantageacrosstheboardsuggeststhatmeta-learnedfeaturesarequalitativelydifferentfromconventionalfeaturesandfundamentallysuperiorforfew-shotlearning.
9
10
ClassClusteringinFeatureSpace
MeasuringClusteringinFeatureSpace:
Tomeasurefeatureclustering(FC),weconsidertheintra-classtointer-classvarianceratio:
φi,j-featurevectorcorrespondingtodatapointinclassiintrainingdata
μi-meanoffeaturevectorsinclassi
μ-meanacrossallfeaturevectors
C-numberofclasses
N-numberofdatapointsperclass
Where,fθ(xi,j)=φi,jfθ-featureextractor
xi,j-trainingdatainclassi
Lowvaluesofthisfractioncorrespondtocollectionsoffeaturessuchthatclassesarewell-separatedandahyperplaneformedbychoosingapointfromeachoftwoclassesdoesnotvarydramaticallywiththechoiceofsamples.
WhyClusteringisimportant?
?Asfeaturesinaclassbecomespreadoutandtheclassesarebroughtclosertogether,theclassificationboundariesformedbysamplingone-shotdataoftenmisclassifylargeregions.
?Asfeaturesinaclassarecompactedandclassesmovefarapartfromeachother,theintra-classtointer-classvarianceratiodrops,andthedependenceoftheclassboundaryonthechoiceofone-shotsamplesbecomesweaker.
11
ComparingFeatureRepresentationsofMeta-LearningandClassicallyTrainedModels
?Threeclassesarerandomlychosenfromthetestset,and100samplesaretakenfromeachclass.Thesamplesarethenpassedthroughthefeatureextractor,andtheresultingvectorsareplotted.
?Becausefeaturespaceishigh-dimensional,weperformalinearprojectionontothefirsttwocomponentvectorsdeterminedbyLDA.
?Lineardiscriminantanalysis(LDA)projectsdataontodirectionsthatminimizetheintra-classtointer-classvarianceratio.
?Theclassicallytrainedmodelmashesfeaturestogether,whilethemeta-learnedmodelsdrawtheclassesfartherapart.
12
13
HyperplaneInvariance
Thisregularizerwithonethatpenalizesvariationsinthemaximum-marginhyperplaneseparatingfeaturevectorsin
oppositeclasses
HyperplaneVariationRegularizer:
DatpointsinclassA:x1,x2
DatapointsinclassB:y1,y2
fθ-featureextractor
fθ(x1)-fθ(y1):determinesthedirectionofthemaximum
marginhyperplaneseparatingthetwopointsinthefeaturespace
?Thisfunctionmeasuresthedistancebetweendistancevectorsx1?y1andx2?y2relativetotheirsize.
?Inpractice,duringabatchoftraining,wesamplemanypairsofclassesandtwosamplesfromeachclass.Then,wecomputeRHVonallclasspairsandaddthesetermstothecross-entropyloss.
?WefindthatthisregularizerperformsalmostaswellasFeatureClusteringRegularizerandconclusivelyoutperformsnon-regularizedclassicaltraining.
14
Experiments
?FeatureclusteringandHyperplanevariationvaluesarecomputed.
?Thesetwoquantitiesmeasuretheintra-classtointer-classvarianceratioandinvarianceofseparatinghyperplanes.
?Lowervaluesofeachmeasurementcorrespondtobetterclassseparation.
?OnbothCIFAR-FSandmini-ImageNet,themeta-learnedmodelsattainlowervalues,indicatingthatfeaturespaceclusteringplaysaroleintheeffectivenessofmeta-learning.
15
Experiments
?Weincorporatetheseregularizersintoastandardtrainingroutineoftheclassicaltrainingmodel.
?Inallexperiments,featureclusteringimprovestheperformanceoftransferlearningandsometimesevenachieveshigherperformancethanmeta-learning
16
WeightClustering:FindingClustersofLocalMinimaforTaskLossesinParameterSpace
?SinceReptiledoesnotfixthefeatureextractorduringfine-tuning,itmustfindparametersthatadapteasilytonewtasks.
?WehypothesizethatReptilefindsparametersthatlieveryclosetogoodminimaformanytasksandis,therefore,abletoperformwellonthesetasksafterverylittlefine-tuning.
?ThishypothesisisfurthermotivatedbythecloserelationshipbetweenReptileandconsensusoptimization.
?Inaconsensusmethod,anumberofmodelsareindependentlyoptimizedwiththeirowntask-specificparameters,andthetaskscommunicateviaapenaltythatencouragesalltheindividualsolutionsto
convergearoundacommonvalue.
17
ConsensusFormulation:
?Reptilecanbeinterpretedasapproximatelyminimizingtheconsensusformulation
?Reptiledivergesfromatraditionalconsensusoptimizeronlyinthatitdoesnotexplicitlyconsiderthequadraticpenaltytermwhenminimizingfor?θp.
18
ConsensusOptimizationImprovesReptile
?WemodifyReptiletoexplicitlyenforceparameterclusteringaroundaconsensusvalue.
?Wefindthatdirectlyoptimizingtheconsensusformulationleadstoimprovedperformance.
?duringeachinnerloopupdatestepinReptile,wepenalizethesquareddistancefromtheparametersforthecurrenttasktotheaverageoftheparametersacrossalltasksinthecurrentbatch.
?ThisisequivalenttotheoriginalReptilewhenα=0.Wecallthismethod“Weight-Clustering.
ReptilewithWeightClusteringRegularizer
n-numberofmeta-trainingsteps
k-numberofiterationsorstepstoperformwithineachmeta-trainingstep
19
20
Resultsofweightclustering
?WecomparetheperformanceofourregularizedReptilealgorithmtothatoftheoriginalReptilemethodaswellasfirst-orderMAML(FOMAML)andaclassicallytrainedmodelofthesamearchitecture.We
testthesemethodsonasampleof100,0005-way1-shotand5-shotmini-ImageNettasks
?ReptilewithWeight-Clusteringachieveshigherperformance.
21
Resultsofweightclustering
?ParametersofnetworkstrainedusingourregularizedversionofReptiledonottravelasfarduringfine-tuningatinferenceasthosetrainedusingvanillaReptile
?Fromthese,weconcludethatourregularizerdoesindeedmovemo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 加強(qiáng)出庫(kù)效率的方案計(jì)劃
- 2025年證券從業(yè)資格的挑戰(zhàn)及對(duì)策試題及答案
- 國(guó)開2025年《人文英語(yǔ)3》綜合任務(wù)答案
- 項(xiàng)目管理團(tuán)隊(duì)溝通的成功案例分析試題及答案
- 2025年特許金融分析師財(cái)務(wù)管理試題及答案
- 2025年注冊(cè)會(huì)計(jì)師考試中立性試題及答案
- 2024-2025學(xué)年新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)練:7.2《空間點(diǎn)、直線、平面之間的位置關(guān)系》 (含答案詳解)教案
- 感染性疾病的早期檢測(cè)方法研究試題及答案
- 中醫(yī)兒科課題申報(bào)書
- 2025年證券從業(yè)資格證新動(dòng)態(tài)試題及答案
- 單縣煙草專賣局QC課題:多維度降低行政處罰文書出錯(cuò)率課件
- 2021抑郁癥基層診療指南(最終版)解讀
- 采購(gòu)談判的技巧案例
- 質(zhì)量整改通知單(樣板)
- 二子女無(wú)財(cái)產(chǎn)無(wú)債務(wù)離婚協(xié)議書
- 換填承載力計(jì)算(自動(dòng)版)
- 公司董事會(huì)會(huì)議臺(tái)賬
- 2021-2022學(xué)年福建省廈門市第一中學(xué)高二下學(xué)期期中生物試題(原卷版)
- 煤礦安管人員七新題庫(kù)及答案
- (完整word版)中小學(xué)教育質(zhì)量綜合評(píng)價(jià)指標(biāo)框架(試行)
- HIV-1病毒載量測(cè)定及質(zhì)量保證指南
評(píng)論
0/150
提交評(píng)論