2025年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第1頁
2025年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第2頁
2025年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第3頁
2025年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第4頁
2025年滬教版高一數(shù)學(xué)上冊(cè)月考試卷_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年滬教版高一數(shù)學(xué)上冊(cè)月考試卷185考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共6題,共12分)1、函數(shù)和函數(shù)(a>0,且a0)的圖象畫在同一個(gè)坐標(biāo)系中,得到的圖象只可能是下面四個(gè)圖象中的()2、【題文】已知合集集合則集合是()A.(1,2)B.C.D.3、【題文】設(shè)則屬于區(qū)間().A.B.C.D.4、給出下列四個(gè)命題:

①“三個(gè)球全部放入兩個(gè)盒子,其中必有一個(gè)盒子有一個(gè)以上的球”是必然事件。

②“當(dāng)x為某一實(shí)數(shù)時(shí)可使”是不可能事件。

③“明天順德要下雨”是必然事件。

④“從100個(gè)燈泡中取出5個(gè),5個(gè)都是次品”是隨機(jī)事件.

其中正確命題的個(gè)數(shù)是()A.0B.1C.2D.35、設(shè)為兩個(gè)平面,l,m為兩條直線,且有如下兩個(gè)命題:①若②若lm,則那么()A.①是真命題,②是假命題B.①是假命題,②是真命題C.①、②都是真命題D.①、②都是假命題6、若函數(shù)則f(x)()A.圖象關(guān)于對(duì)稱B.圖象關(guān)于對(duì)稱C.在上單調(diào)遞減D.單調(diào)遞增區(qū)間是評(píng)卷人得分二、填空題(共9題,共18分)7、在正項(xiàng)等比數(shù)列{an}中,公比q≠1,設(shè)則P與Q的大小關(guān)系是____.8、如果函數(shù)f(x)=x2-2ax+6是偶函數(shù),則f(x)的單調(diào)增區(qū)間是____.9、已知的值為____。10、定義在區(qū)間上的奇函數(shù)它在上的圖象是一條如右圖所示線段(不含點(diǎn)),則不等式的解集為____________________________.11、已知圓系(a≠1,a∈R),則該圓系恒過定點(diǎn)____.12、【題文】已知函數(shù)是偶函數(shù),則函數(shù)的單調(diào)遞增區(qū)間為__________。13、【題文】滿足條件的集合共有____個(gè)。14、設(shè)a=log0.60.9,b=ln0.9,c=20.9,則a、b、c由小到大的順序是____.15、102012(3)=______(10).評(píng)卷人得分三、作圖題(共8題,共16分)16、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.17、作出下列函數(shù)圖象:y=18、作出函數(shù)y=的圖象.19、畫出計(jì)算1++++的程序框圖.20、請(qǐng)畫出如圖幾何體的三視圖.

21、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個(gè)過程的位移示意圖.22、繪制以下算法對(duì)應(yīng)的程序框圖:

第一步;輸入變量x;

第二步,根據(jù)函數(shù)f(x)=

對(duì)變量y賦值;使y=f(x);

第三步,輸出變量y的值.23、已知簡(jiǎn)單組合體如圖;試畫出它的三視圖(尺寸不做嚴(yán)格要求)

評(píng)卷人得分四、計(jì)算題(共3題,共21分)24、已知10a=2,10b=6,則102a-3b=____.25、如圖,在矩形ABCD中,AB=6,AD=4,E是AD邊上一點(diǎn)(點(diǎn)E與A、D不重合).BE的垂直平分線交AB于M;交DC于N.

(1)設(shè)AE=x;試把AM用含x的代數(shù)式表示出來;

(2)設(shè)AE=x,四邊形ADNM的面積為S.寫出S關(guān)于x的函數(shù)關(guān)系式.26、規(guī)定兩數(shù)a、b通過”*”運(yùn)算得到4ab,即a*b=4ab.例如,2*6=4×2×6=48.若不論x是什么數(shù)時(shí),總有a*x=x,則a=____.評(píng)卷人得分五、證明題(共4題,共40分)27、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.28、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.29、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.30、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分六、綜合題(共4題,共16分)31、如圖;在平面直角坐標(biāo)系中,OB⊥OA,且OB=2OA,點(diǎn)A的坐標(biāo)是(-1,2).

(1)求點(diǎn)B的坐標(biāo);

(2)求過點(diǎn)A、O、B的拋物線的表達(dá)式.32、如圖1,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果;那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中;若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過點(diǎn)C任作一條直線交AB于點(diǎn)E,再過點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說明理由.33、如圖,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E為AB延長(zhǎng)線上的一點(diǎn),且EC交AD的延長(zhǎng)線于F.

(1)設(shè)BE為x;DF為y,試用x的式子表示y.

(2)當(dāng)∠ACE=90°時(shí),求此時(shí)x的值.34、如圖;Rt△ABC的兩條直角邊AC=3,BC=4,點(diǎn)P是邊BC上的一動(dòng)點(diǎn)(P不與B重合),以P為圓心作⊙P與BA相切于點(diǎn)M.設(shè)CP=x,⊙P的半徑為y.

(1)求證:△BPM∽△BAC;

(2)求y與x的函數(shù)關(guān)系式;并確定當(dāng)x在什么范圍內(nèi)取值時(shí),⊙P與AC所在直線相離;

(3)當(dāng)點(diǎn)P從點(diǎn)C向點(diǎn)B移動(dòng)時(shí);是否存在這樣的⊙P,使得它與△ABC的外接圓相內(nèi)切?若存在,求出x;y的值;若不存在,請(qǐng)說明理由.

參考答案一、選擇題(共6題,共12分)1、A【分析】試題分析:因?yàn)楹瘮?shù)的定義域?yàn)楣屎瘮?shù)的圖象只能出現(xiàn)在第二、三象限,排除B、C;在A、D中,函數(shù)均為減函數(shù),故此時(shí)函數(shù)也為減函數(shù),故選A考點(diǎn):指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖像與性質(zhì).【解析】【答案】A2、B【分析】【解析】

試題分析:

考點(diǎn):不等式與集合運(yùn)算。

點(diǎn)評(píng):集合A的補(bǔ)集是全集中除去A的元素外其余的元素構(gòu)成的集合,交集為兩集合的相同的元素構(gòu)成的集合【解析】【答案】B3、D【分析】【解析】.【解析】【答案】D4、C【分析】【解答】當(dāng)三個(gè)球全部放入兩個(gè)盒子時(shí),若一個(gè)盒子是1個(gè)球,則另一個(gè)盒子必有2個(gè)球,或三個(gè)球可能放入一個(gè)盒子即它不是必然事件.則①是假命題。當(dāng)x為實(shí)數(shù)時(shí)總有x2≥0,即不可能當(dāng)x為某一實(shí)數(shù)時(shí)可使x2<0成立,所以它是不可能事件.則②是真命題因?yàn)槊魈祉樀孪掠晔遣豢深A(yù)測(cè)的,所以是隨機(jī)事件.則③是假命題。從100個(gè)燈泡中取出5個(gè),5個(gè)燈泡有可能全部是正品,也可能是有部分是正品,也有可能都是次品,所以是隨機(jī)事件.則④是真命題,故②④是真命題,①③是假命題.故選C.5、D【分析】【解答】因?yàn)樗詌,m無公共點(diǎn),即l,m平行或異面。①是假命題;②若是假命題,因?yàn)闂l件無法保證故選D。

【分析】基礎(chǔ)題,??碱}型,構(gòu)建幾何模型,牢記有關(guān)定理是關(guān)鍵。6、C【分析】解:函數(shù)

對(duì)于A:函數(shù)的對(duì)稱軸方程為:=得x=(k∈Z),A不對(duì).

對(duì)于B:當(dāng)x=時(shí),即f()=sin()=1,∴圖象不關(guān)于對(duì)稱.B不對(duì).

對(duì)于C:由可得:≤x≤4kπ(k∈Z),C對(duì).

對(duì)于D:由可得:≤x≤4kπ(k∈Z),D不對(duì).

故選C.

根據(jù)正弦函數(shù)的圖象和性質(zhì)依次判斷即可.

本題主要考查了正弦函數(shù)的圖象及性質(zhì)的綜合運(yùn)用和計(jì)算能力.屬于中檔題.【解析】【答案】C二、填空題(共9題,共18分)7、略

【分析】

∵正項(xiàng)等比數(shù)列{an}中,公比q≠1,∴a5a7=a3a9.

∴===.

∴>=.

又函數(shù)y=在定義域(0;+∞)上是減函數(shù);

∴<即Q<P.

故答案為P>Q.

【解析】【答案】由題意可得a5a7=a3a9,化簡(jiǎn)P為再由>以及函數(shù)y=在定義域(0,+∞)上是減函數(shù),可得<即得Q和P的大小關(guān)系.

8、略

【分析】

∵函數(shù)f(x)=x2-2ax+6是偶函數(shù);

∴a=0

∴函數(shù)f(x)=x2+6

故函數(shù)的圖象是開口朝上;以Y軸為對(duì)稱軸的拋物線。

故f(x)的單調(diào)增區(qū)間是[0;+∞)

故答案為:[0;+∞).

【解析】【答案】由已知中函數(shù)f(x)=x2-2ax+6是偶函數(shù);根據(jù)偶函數(shù)的定義及性質(zhì),我們易求出滿足條件的a值,進(jìn)而確定函數(shù)的解析式及圖象形狀,進(jìn)而得到函數(shù)的單調(diào)遞增區(qū)間.

9、略

【分析】【解析】試題分析:∵∴考點(diǎn):本題考查了指數(shù)運(yùn)算【解析】【答案】2010、略

【分析】【解析】試題分析:由圖象可知函數(shù)在上的解析式為因?yàn)槭瞧婧瘮?shù),所以所以同理可求在上的解集為所以不等式的解集為考點(diǎn):本小題主要考查函數(shù)的單調(diào)性、奇偶性等的綜合應(yīng)用和不等式的求解.【解析】【答案】11、略

【分析】【解析】

因?yàn)橛蓤A系方程可知,該圓系恒過定點(diǎn)(1,1)?!窘馕觥俊敬鸢浮?2、略

【分析】【解析】∵函數(shù)是偶函數(shù),∴即a=1,∴其開口向上且對(duì)稱軸為x=1,故函數(shù)的單調(diào)遞增區(qū)間為【解析】【答案】13、略

【分析】【解析】符合題意的集合M有4個(gè)【解析】【答案】14、b<a<c【分析】【解答】解:∵0<a=log0.60.9<log0.60.6=1,b=ln0.9<0,c=20.9>1,∴b<a<c.

故答案為:b<a<c.

【分析】利用對(duì)數(shù)函數(shù)的單調(diào)性即可得出.15、略

【分析】解:102012(3)=1×35+2×33+1×3+2×30=320;

故答案為:302.

按照三進(jìn)制轉(zhuǎn)化為十進(jìn)制的法則;三進(jìn)制中每一位數(shù)乘以3的n次方,(即n從0到最高位)最后求和即可.

本題考查算法的概念,以及進(jìn)位制,需要對(duì)進(jìn)位制熟練掌握并運(yùn)算準(zhǔn)確.屬于基礎(chǔ)題.【解析】302三、作圖題(共8題,共16分)16、略

【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最省.【解析】【解答】解:作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.

∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.17、【解答】?jī)绾瘮?shù)y={#mathml#}x32

{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點(diǎn)且單調(diào)遞增,如圖所示;

【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.18、【解答】圖象如圖所示。

【分析】【分析】描點(diǎn)畫圖即可19、解:程序框圖如下:

【分析】【分析】根據(jù)題意,設(shè)計(jì)的程序框圖時(shí)需要分別設(shè)置一個(gè)累加變量S和一個(gè)計(jì)數(shù)變量i,以及判斷項(xiàng)數(shù)的判斷框.20、解:如圖所示:

【分析】【分析】由幾何體是圓柱上面放一個(gè)圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長(zhǎng)方形上邊加一個(gè)三角形,長(zhǎng)方形上邊加一個(gè)三角形,圓加一點(diǎn).21、解:由題意作示意圖如下;

【分析】【分析】由題意作示意圖。22、解:程序框圖如下:

【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時(shí),函數(shù)解析式不同,因此當(dāng)給出一個(gè)自變量x的值時(shí),必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因?yàn)楹瘮?shù)解析式分了三段,所以判斷框需要兩個(gè),即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.23、

解:幾何體的三視圖為:

【分析】【分析】利用三視圖的作法,畫出三視圖即可.四、計(jì)算題(共3題,共21分)24、略

【分析】【分析】先利用同底數(shù)冪的除法法則把所求式子轉(zhuǎn)換成除法運(yùn)算,再利用冪的乘方法則變形,最后把10a、10b的值整體代入計(jì)算即可.【解析】【解答】解:∵10a=2,10b=6;

∴102a-3b=(10a)2÷(10b)3=4÷216=;

故答案是.25、略

【分析】【分析】(1)根據(jù)線段的垂直平分線推出BM=ME;根據(jù)勾股定理求出即可.

(2)連接ME,NE,NB,設(shè)AM=a,DN=b,NC=6-b,根據(jù)勾股定理得到AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2,代入求出即可.【解析】【解答】解:(1)連接ME.

∵M(jìn)N是BE的垂直平分線;

∴BM=ME=6-AM;

在△AME中;∠A=90°;

由勾股定理得:AM2+AE2=ME2;

AM2+x2=(6-AM)2;

AM=3-x.

(2)連接ME,NE,NB,設(shè)AM=a,DN=b,NC=6-b;

因MN垂直平分BE;

則ME=MB=6-a;NE=NB;

所以由勾股定理得

AM2+AE2=ME2,DN2+DE2=NE2=BN2=BC2+CN2

即a2+x2=(6-a)2,b2+(4-x)2=42+(6-b)2;

解得a=3-x2,b=x2+x+3;

所以四邊形ADNM的面積為S=×(a+b)×4=2x+12;

即S關(guān)于x的函數(shù)關(guān)系為S=2x+12(0<x<2);

答:S關(guān)于x的函數(shù)關(guān)系式是S=2x+12.26、略

【分析】【分析】根據(jù)a*b=4ab得到4ax=x,求出方程的解即可.【解析】【解答】解:∵a*x=x;

∴4ax=x;

當(dāng)x≠0時(shí);

∴a=.

故答案為:.五、證明題(共4題,共40分)27、略

【分析】【分析】首先作CD關(guān)于AB的對(duì)稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對(duì)稱直線FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四點(diǎn)共圓.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.28、略

【分析】【分析】(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點(diǎn)C作CE⊥AB于點(diǎn)E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.29、略

【分析】【分析】首先作CD關(guān)于AB的對(duì)稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對(duì)稱直線FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四點(diǎn)共圓.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.30、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.六、綜合題(共4題,共16分)31、略

【分析】【分析】(1)此題可通過構(gòu)建相似三角形來求解;分別過A;B作x軸的垂線,由于∠AOB=90°,則可證得△AOC∽△OBD,然后利用兩個(gè)三角形的相似比(即OB=2OA),求出點(diǎn)B的坐標(biāo);

(2)求出B點(diǎn)坐標(biāo)后,可利用待定系數(shù)法求出經(jīng)過A、O、B三點(diǎn)的拋物線解析式.【解析】【解答】解:(1)分別作AC⊥x軸;BD⊥x軸,垂足分別是C;D;

∵∠AOB=90°;

∴∠AOC+∠BOD=90°;而∠AOC+∠CAO=90°;

∴∠BOD=∠CAO;

又∵∠ACO=∠BDO=90°;

∴△AOC∽△OBD;

∵OB=2OA;

∴===

則OD=2AC=4;DB=2OC=2;

所以點(diǎn)B(4;2);(2分)

(2)設(shè)二次函數(shù)解析式為y=ax2+bx;把A(-1,2)B(4,2)代入;

得;(2分)

解得;(2分)

所以解析式為.(1分)32、略

【分析】【分析】(1)設(shè)△ABC的邊AB上的高為h,由三角形的面積公式即可得出=,=,再由點(diǎn)D為邊AB的黃金分割點(diǎn)可得出=;故可得出結(jié)論;

(2)由DF∥CE可知△DEC和△FCE的公共邊CE上的高也相等,故S△DEC=S△FCE,設(shè)直線EF與CD交于點(diǎn)G,由同底等高的三角形的面積相等可知S△DEG=S△FEG,故可得出S△ADC=S四邊形AFGD+S△FCG=S△AEF,再由S△BDC=S四邊形BEFC,再由=可知=,故直線EF也是△ABC的黃金分割線.【解析】【解答】解:(1)直線CD是△ABC的黃金分割線.理由如下:

設(shè)△ABC的邊AB上的高為h.

∵S△ADC=AD?h,S△BDC=BD?h,S△ABC=AB?h;

∴=,=;

又∵點(diǎn)D為邊AB的黃金分割點(diǎn);

∴=;

∴=;

∴直線CD是△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論