平面幾何輔助線添加技法總結(jié)與例題詳解_第1頁
平面幾何輔助線添加技法總結(jié)與例題詳解_第2頁
平面幾何輔助線添加技法總結(jié)與例題詳解_第3頁
平面幾何輔助線添加技法總結(jié)與例題詳解_第4頁
平面幾何輔助線添加技法總結(jié)與例題詳解_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

PAGE第一講注意添加平行線證題在同一平面內(nèi),不相交的兩條直線叫平行線.平行線是初中平面幾何最基本的,也是非常重要的圖形.在證明某些平面幾何問題時,若能依據(jù)證題的需要,添加恰當(dāng)?shù)钠叫芯€,則能使證明順暢、簡潔.添加平行線證題,一般有如下四種情況.1為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補.利用這些性質(zhì),常可通過添加平行線,將某些角的位置改變,以滿足求解的需要.例1設(shè)P、Q為線段BC上兩點,且BP=CQ,A為BC外一動點(如圖1).當(dāng)點A運動到使∠BAP=∠CAQ時,△ABC是什么三角形?試證明你的結(jié)論.答:當(dāng)點A運動到使∠BAP=∠CAQ時,△ABC為等腰三角形.證明:如圖1,分別過點P、B作AC、AQ的平行線得交點D.連結(jié)DA.在△DBP=∠AQC中,顯然∠DBP=∠AQC,∠DPB=∠C.由BP=CQ,可知△DBP≌△AQC.有DP=AC,∠BDP=∠QAC.于是,DA∥BP,∠BAP=∠BDP.則A、D、B、P四點共圓,且四邊形ADBP為等腰梯形.故AB=DP.所以AB=AC.這里,通過作平行線,將∠QAC“平推”到∠BDP的位置.由于A、D、B、P四點共圓,使證明很順暢.例2如圖2,四邊形ABCD為平行四邊形,∠BAF=∠BCE.求證:∠EBA=∠ADE.證明:如圖2,分別過點A、B作ED、EC的平行線,得交點P,連PE.由ABCD,易知△PBA≌△ECD.有PA=ED,PB=EC.顯然,四邊形PBCE、PADE均為平行四邊形.有∠BCE=∠BPE,∠APE=∠ADE.由∠BAF=∠BCE,可知∠BAF=∠BPE.有P、B、A、E四點共圓.于是,∠EBA=∠APE.所以,∠EBA=∠ADE.這里,通過添加平行線,使已知與未知中的四個角通過P、B、A、E四點共圓,緊密聯(lián)系起來.∠APE成為∠EBA與∠ADE相等的媒介,證法很巧妙.2為了改變線段的位置利用“平行線間距離相等”、“夾在平行線間的平行線段相等”這兩條,??赏ㄟ^添加平行線,將某些線段“送”到恰當(dāng)位置,以證題.例3在△ABC中,BD、CE為角平分線,P為ED上任意一點.過P分別作AC、AB、BC的垂線,M、N、Q為垂足.求證:PM+PN=PQ.證明:如圖3,過點P作AB的平行線交BD于F,過點F作BC的平行線分別交PQ、AC于K、G,連PG.由BD平行∠ABC,可知點F到AB、BC兩邊距離相等.有KQ=PN.顯然,==,可知PG∥EC.由CE平分∠BCA,知GP平分∠FGA.有PK=PM.于是,PM+PN=PK+KQ=PQ.這里,通過添加平行線,將PQ“掐開”成兩段,證得PM=PK,就有PM+PN=PQ.證法非常簡捷.3為了線段比的轉(zhuǎn)化由于“平行于三角形一邊的直線截其它兩邊,所得對應(yīng)線段成比例”,在一些問題中,可以通過添加平行線,實現(xiàn)某些線段比的良性轉(zhuǎn)化.這在平面幾何證題中是會經(jīng)常遇到的.例4設(shè)M1、M2是△ABC的BC邊上的點,且BM1=CM2.任作一直線分別交AB、AC、AM1、AM2于P、Q、N1、N2.試證:+=+.證明:如圖4,若PQ∥BC,易證結(jié)論成立.若PQ與BC不平行,設(shè)PQ交直線BC于D.過點A作PQ的平行線交直線BC于E.由BM1=CM2,可知BE+CE=M1E+M2E,易知=,=,=,=.則+===+.所以,+=+.這里,僅僅添加了一條平行線,將求證式中的四個線段比“通分”,使公分母為DE,于是問題迎刃而解.例5AD是△ABC的高線,K為AD上一點,BK交AC于E,CK交AB于F.求證:∠FDA=∠EDA.證明:如圖5,過點A作BC的平行線,分別交直線DE、DF、BE、CF于Q、P、N、M.顯然,==.有BD·AM=DC·AN.(1)2構(gòu)造相關(guān)的輔助圓解題有些問題貌似與圓無關(guān),但問題的題設(shè)或結(jié)論或圖形提供了某些與圓的性質(zhì)相似的信息,此時可大膽聯(lián)想構(gòu)造出與題目相關(guān)的輔助圓,將原問題轉(zhuǎn)化為與圓有關(guān)的問題加以解決.2.1聯(lián)想圓的定義構(gòu)造輔助圓例4如圖4,四邊形ABCD中,AB∥CD,AD=DC=DB=p,BC=q.求對角線AC的長.分析:由“AD=DC=DB=p”可知A、B、C在半徑為p的⊙D上.利用圓的性質(zhì)即可找到AC與p、q的關(guān)系.解:延長CD交半徑為p的⊙D于E點,連結(jié)AE.顯然A、B、C在⊙D上.∵AB∥CD,∴BC=AE.從而,BC=AE=q.在△ACE中,∠CAE=90°,CE=2p,AE=q,故AC==.2.2聯(lián)想直徑的性質(zhì)構(gòu)造輔助圓例5已知拋物線y=-x2+2x+8與x軸交于B、C兩點,點D平分BC.若在x軸上側(cè)的A點為拋物線上的動點,且∠BAC為銳角,則AD的取值范圍是____.分析:由“∠BAC為銳角”可知點A在以定線段BC為直徑的圓外,又點A在x軸上側(cè),從而可確定動點A的范圍,進而確定AD的取值范圍.解:如圖5,所給拋物線的頂點為A0(1,9),對稱軸為x=1,與x軸交于兩點B(-2,0)、C(4,0).分別以BC、DA為直徑作⊙D、⊙E,則兩圓與拋物線均交于兩點P(1-2,1)、Q(1+2,1).可知,點A在不含端點的拋物線PA0Q內(nèi)時,∠BAC<90°.且有3=DP=DQ<AD≤DA0=9,即AD的取值范圍是3<AD≤9.2.3聯(lián)想圓冪定理構(gòu)造輔助圓例6AD是Rt△ABC斜邊BC上的高,∠B的平行線交AD于M,交AC于N.求證:AB2-AN2=BM·BN.分析:因AB2-AN2=(AB+AN)(AB-AN)=BM·BN,而由題設(shè)易知AM=AN,聯(lián)想割線定理,構(gòu)造輔助圓即可證得結(jié)論.證明:如圖6,∵∠2+∠3=∠4+∠5=90°,又∠3=∠4,∠1=∠5,∴∠1=∠2.從而,AM=AN.以AM長為半徑作⊙A,交AB于F,交BA的延長線于E.則AE=AF=AN.由割線定理有BM·BN=BF·BE=(AB+AE)(AB-AF)=(AB+AN)(AB-AN)=AB2-AN2,即AB2-AN2=BM·BN.例7如圖7,ABCD是⊙O的內(nèi)接四邊形,延長AB和DC相交于E,延長AB和DC相交于E,延長AD和BC相交于F,EP和FQ分別切⊙O于P、Q.求證:EP2+FQ2=EF2.分析:因EP和FQ是⊙O的切線,由結(jié)論聯(lián)想到切割線定理,構(gòu)造輔助圓使EP、FQ向EF轉(zhuǎn)化.證明:如圖7,作△BCE的外接圓交EF于G,連結(jié)CG.因∠FDC=∠ABC=∠CGE,故F、D、C、G四點共圓.由切割線定理,有EF2=(EG+GF)·EF=EG·EF+GF·EF=EC·ED+FC·FB=EC·ED+FC·FB=EP2+FQ2,即EP2+FQ2=EF2.2.4聯(lián)想托勒密定理構(gòu)造輔助圓例8如圖8,△ABC與△A'B'C'的三邊分別為a、b、c與a'、b'、c',且∠B=∠B',∠A+∠A'=180°.試證:aa'=bb'+cc'.分析:因∠B=∠B',∠A+∠A'=180°,由結(jié)論聯(lián)想到托勒密定理,構(gòu)造圓內(nèi)接四邊形加以證明.證明:作△ABC的外接圓,過C作CD∥AB交圓于D,連結(jié)AD和BD,如圖9所示.∵∠A+∠A'=180°=∠A+∠D,∠BCD=∠B=∠B',∴∠A'=∠D,∠B'=∠BCD.∴△A'B'C'∽△DCB.有==,即==.故DC=,DB=.又AB∥DC,可知BD=AC=b,BC=AD=a.從而,由托勒密定理,得AD·BC=AB·DC+AC·BD,即a2=c·+b·.故aa'=bb'+cc'.練習(xí)題1.作一個輔助圓證明:△ABC中,若AD平分∠A,則=.(提示:不妨設(shè)AB≥AC,作△ADC的外接圓交AB于E,證△ABC∽△DBE,從而==.)2.已知凸五邊形ABCDE中,∠BAE=3a,BC=CD=DE,∠BCD=∠CDE=180°-2a.求證:∠BAC=∠CAD=∠(提示:由已知證明∠BCE=∠BDE=180°-3a,從而A、B、C、D、E共圓,得∠BAC=∠CAD=∠DAE3.在△ABC中AB=BC,∠ABC=20°,在AB邊上取一點M,使BM=AC.求∠AMC的度數(shù).(提示:以BC為邊在△ABC外作正△KBC,連結(jié)KM,證B、M、C共圓,從而∠BCM=∠BKM=10°,得∠AMC=30°.)4.如圖10,AC是ABCD較長的對角線,過C作CF⊥AF,CE⊥AE.求證:AB·AE+AD·AF=AC2.(提示:分別以BC和CD為直徑作圓交AC于點G、H.則CG=AH,由割線定理可證得結(jié)論.)5.如圖11.已知⊙O1和⊙O2相交于A、B,直線CD過A交⊙O1和⊙O2于C、D,且AC=AD,EC、ED分別切兩圓于C、D.求證:AC2=AB·AE.(提示:作△BCD的外接圓⊙O3,延長BA交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論