版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
平面向量的概念及線性運(yùn)算知識點(diǎn):1.向量的有關(guān)概念名稱定義備注向量既有大小,又有方向的量統(tǒng)稱為向量;向量的大小叫做向量的長度(或稱模)平面向量是自由向量零向量長度為0的向量;其方向是任意的記作0單位向量長度等于1個(gè)單位的向量非零向量a的單位向量為±eq\f(a,|a|)平行向量如果表示兩個(gè)向量的有向線段所在的直線平行或重合,則稱這兩個(gè)向量平行或共線0與任一向量平行相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為02.向量的線性運(yùn)算向量運(yùn)算定義法則(或幾何意義)運(yùn)算律加法求兩個(gè)向量和的運(yùn)算交換律:a+b=b+a結(jié)合律:(a+b)+c=a+(b+c)減法求a與b的相反向量-b的和的運(yùn)算叫做a與b的差三角形法則a-b=a+(-b)數(shù)乘求實(shí)數(shù)λ與向量a的積的運(yùn)算(1)|λa|=|λ||a|;(2)當(dāng)λ>0時(shí),λa的方向與a的方向相同;當(dāng)λ<0時(shí),λa的方向與a的方向相反;當(dāng)λ=0時(shí),λa=0(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λaμa;(3)λ(a+b)=λa+λb3.向量共線的判定定理a是一個(gè)非零向量,若存在一個(gè)實(shí)數(shù)λ,使得b=λa,則向量b與非零向量a共線.選擇題:給出下列命題:①零向量的長度為零,方向是任意的;②若a,b都是單位向量,則a=b;③向量eq\o(AB,\s\up6(→))與eq\o(BA,\s\up6(→))相等.則所有正確命題的序號是()A.①B.③C.①③D.①②解析根據(jù)零向量的定義可知①正確;根據(jù)單位向量的定義可知,單位向量的模相等,但方向不一定相同,故兩個(gè)單位向量不一定相等,故②錯(cuò)誤;向量eq\o(AB,\s\up6(→))與eq\o(BA,\s\up6(→))互為相反向量,故③錯(cuò)誤.已知下列各式:①eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CA,\s\up6(→));②eq\o(AB,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(BO,\s\up6(→))+eq\o(OM,\s\up6(→));③eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(BO,\s\up6(→))+eq\o(CO,\s\up6(→));④eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))+eq\o(BD,\s\up6(→))-eq\o(CD,\s\up6(→)),其中結(jié)果為零向量的個(gè)數(shù)為()A.1B.2C.3D.4解析由題知結(jié)果為零向量的是①④,故選B.設(shè)a0為單位向量,①若a為平面內(nèi)的某個(gè)向量,則a=|a|a0;②若a與a0平行,則a=|a|a0;③若a與a0平行且|a|=1,則a=a0.上述命題中,假命題的個(gè)數(shù)是()A.0B.1C.2D.3解析向量是既有大小又有方向的量,a與|a|a0的模相同,但方向不一定相同,故①是假命題;若a與a0平行,則a與a0的方向有兩種情況:一是同向,二是反向,反向時(shí)a=-|a|a0,故②③也是假命題.綜上所述,假命題的個(gè)數(shù)是3.設(shè)a0,b0分別是與a,b同向的單位向量,則下列結(jié)論中正確的是()A.a(chǎn)0=b0B.a(chǎn)0·b0=1C.|a0|+|b0|=2D.|a0+b0|=2解析∵是單位向量,∴|a0|=1,|b0|=1設(shè)a是非零向量,λ是非零實(shí)數(shù),下列結(jié)論中正確的是()A.a(chǎn)與λa的方向相反B.a(chǎn)與λ2a的方向相同C.|-λa|≥|a|D.|-λa|≥|λ|·解析對于A,當(dāng)λ>0時(shí),a與λa的方向相同,當(dāng)λ<0時(shí),a與λa的方向相反,B正確;對于C,|-λa|=|-λ||a|,由于|-λ|的大小不確定,故|-λa|與|a|的大小關(guān)系不確定;對于D,|λ|a是向量,而|-λa|表示長度,兩者不能比較大小.又∵A,B,D三點(diǎn)共線,∴eq\o(AB,\s\up6(→)),eq\o(BD,\s\up6(→))共線.設(shè)eq\o(AB,\s\up6(→))=λeq\o(BD,\s\up6(→)),∴2a+pb=λ(2a-b),∴2=2λ,p=-λ,∴λ=1,p=-1.已知平面內(nèi)一點(diǎn)P及△ABC,若eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→)),則點(diǎn)P與△ABC的位置關(guān)系是()A.點(diǎn)P在線段AB上B.點(diǎn)P在線段BC上C.點(diǎn)P在線段AC上D.點(diǎn)P在△ABC外部解析由eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→))得eq\o(PA,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(PB,\s\up6(→))=eq\o(AP,\s\up6(→)),即eq\o(PC,\s\up6(→))=eq\o(AP,\s\up6(→))-eq\o(PA,\s\up6(→))=2eq\o(AP,\s\up6(→)),所以點(diǎn)P在線段AC上.已知點(diǎn)O為△ABC外接圓的圓心,且eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,則△ABC的內(nèi)角A等于()A.30°B.60°C.90°D.120°解析由eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,知點(diǎn)O為△ABC的重心,又∵O為△ABC外接圓的圓心,∴△ABC為等邊三角形,A=60°.填空題:設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=eq\f(1,2)AB,BE=eq\f(2,3)BC.若eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→))(λ1,λ2為實(shí)數(shù)),則λ1+λ2的值為________解析eq\o(DE,\s\up6(→))=eq\o(DB,\s\up6(→))+eq\o(BE,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(BC,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(2,3)(eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→)))=-eq\f(1,6)eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(AC,\s\up6(→)),∵eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→)),∴λ1=-eq\f(1,6),λ2=eq\f(2,3),故λ1+λ2=eq\f(1,2).如圖,在平行四邊形ABCD中,對角線AC與BD交于點(diǎn)O,eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))=λeq\o(AO,\s\up6(→)),則λ=________解析∵ABCD為平行四邊形,∴eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\o(AC,\s\up6(→))=2eq\o(AO,\s\up6(→)),已知eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))=λeq\o(AO,\s\up6(→)),故λ=2已知□ABCD的對角線AC和BD相交于O,且eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則eq\o(DC,\s\up6(→))=________,eq\o(BC,\s\up6(→))=________(用a,b表示).解析如圖,eq\o(DC,\s\up6(→))=eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→))=b-a,eq\o(BC,\s\up6(→))=eq\o(OC,\s\up6(→))-eq\o(OB,\s\up6(→))=-eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))=-a-b.已知a與b是兩個(gè)不共線向量,且向量a+λb與-(b-3a)共線,則λ=________.解析由已知得a+λb=-k(b-3a),∴eq\b\lc\{\rc\(\a\vs4\al\co1(λ=-k,,3k=1.))解得eq\b\lc\{\rc\(\a\vs4\al\co1(λ=-\f(1,3),,k=\f(1,3).))已知O為四邊形ABCD所在平面內(nèi)一點(diǎn),且向量eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→)),eq\o(OD,\s\up6(→))滿足等式eq\o(OA,\s\up6(→))+eq\o(OC,\s\up6(→))=eq\o(OB,\s\up6(→))+eq\o(OD,\s\up6(→)),則四邊形ABCD的形狀為________解析由eq\o(OA,\s\up6(→))+eq\o(OC,\s\up6(→))=eq\o(OB,\s\up6(→))+eq\o(OD,\s\up6(→))得eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))=eq\o(OD,\s\up6(→))-eq\o(OC,\s\up6(→)),∴eq\o(BA,\s\up6(→))=eq\o(CD,\s\up6(→)),∴四邊形ABCD為平行四邊形.若點(diǎn)O是△ABC所在平面內(nèi)的一點(diǎn),且滿足|eq\o(OB,\s\up6(→))-eq\o(OC,\s\up6(→))|=|eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))-2eq\o(OA,\s\up6(→))|,則△ABC的形狀為________解析:eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))-2eq\o(OA,\s\up6(→))=(eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→)))+(eq\o(OC,\s\up6(→))-eq\o(OA,\s\up6(→)))=eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→)),eq\o(OB,\s\up6(→))-eq\o(OC,\s\up6(→))=eq\o(CB,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)),∴|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|,故A,B,C為矩形的三個(gè)頂點(diǎn),△ABC為直角三角形.設(shè)點(diǎn)M是線段BC的中點(diǎn),點(diǎn)A在直線BC外,eq\o(BC,\s\up6(→))2=16,|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|,則|eq\o(AM,\s\up6(→))|=________解析由|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|得,eq\o(AB,\s\up6(→))⊥eq\o(AC,\s\up6(→)),則AM為Rt△ABC斜邊BC上的中線,∴|eq\o(AM,\s\up6(→))|=eq\f(1,2)|eq\o(BC,\s\up6(→))|=2在△ABC中,點(diǎn)M,N滿足eq\o(AM,\s\up6(→))=2eq\o(MC,\s\up6(→)),eq\o(BN,\s\up6(→))=eq\o(NC,\s\up6(→)).若eq\o(MN,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→)),則x=________;y=________解析eq\o(MN,\s\up6(→))=eq\o(MC,\s\up6(→))+eq\o(CN,\s\up6(→))=eq\f(1,3)eq\o(AC,\s\up6(→))+eq\f(1,2)eq\o(CB,\s\up6(→))=eq\f(1,3)eq\o(AC,\s\up6(→))+eq\f(1,2)(eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→)))=eq\f(1,2)eq\o(AB,\s\up6(→))-eq\f(1,6)eq\o(AC,\s\up6(→)),∴x=eq\f(1,2),y=-eq\f(1,6).解答題:在△ABC中,D、E分別為BC、AC邊上的中點(diǎn),G為BE上一點(diǎn),且GB=2GE,設(shè)eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,試用a,b表示eq\o(AD,\s\up6(→)),eq\o(AG,\s\up6(→)).解eq\o(AD,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→)))=eq\f(1,2)a+eq\f(1,2)b.eq\o(AG,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BG,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(BE,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,3)(eq\o(BA,\s\up6(→))+eq\o(BC,\s\up6(→)))=eq\f(2,3)eq\o(AB,\s\up6(→))+eq\f(1,3)(eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→)))=eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AC,\s\up6(→))=eq\f(1,3)a+eq\f(1,3)b.設(shè)兩個(gè)非零向量e1和e2不共線.(1)如果eq\o(AB,\s\up6(→))=e1-e2,eq\o(BC,\s\up6(→))=3e1+2e2,eq\o(CD,\s\up6(→))=-8e1-2e2,求證:A、C、D三點(diǎn)共線;(2)如果eq\o(AB,\s\up6(→))=e1+e2,eq\o(BC,\s\up6(→))=2e1-3e2,eq\o(CD,\s\up6(→))=2e1-ke2,且A、C、D三點(diǎn)共線,求k的值.(1)證明∵eq\o(AB,\s\up6(→))=e1-e2,eq\o(BC,\s\up6(→))=3e1+2e2,eq\o(CD,\s\up6(→))=-8e1-2e2,∴eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))=4e1+e2=-eq\f(1,2)(-8e1-2e2)=-eq\f(1,2)eq\o(CD,\s\up6(→)),∴eq\o(AC,\s\up6(→))與eq\o(CD,\s\up6(→))共線.又∵eq\o(AC,\s\up6(→))與eq\o(CD,\s\up6(→))有公共點(diǎn)C,∴A、C、D三點(diǎn)共線.(2)解eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))=(e1+e2)+(2e1-3e2)=3e1-2e2,∵A、C、D三點(diǎn)共線,∴eq\o(AC,\s\up6(→))與eq\o(CD,\s\up6(→))共線,從而存在實(shí)數(shù)λ使得eq\o(AC,\s\up6(→))=λeq\o(CD,\s\up6(→)),即3e1-2e2=λ(2e1-ke2),得eq\b\lc\{\rc\(\a\vs4\al\co1(3=2λ,,-2=-λk,))解得λ=eq\f(3,2),k=eq\f(4,3).專項(xiàng)能力提升設(shè)a,b不共線,eq\o(AB,\s\up6(→))=2a+pb,eq\o(BC,\s\up6(→))=a+b,eq\o(CD,\s\up6(→))=a-2b,若A,B,D三點(diǎn)共線,則實(shí)數(shù)p的值是()A.-2B.-1C.1D.2解析∵eq\o(BC,\s\up6(→))=a+b,eq\o(CD,\s\up6(→))=a-2b,∴eq\o(BD,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=2a-b.又∵A,B,D三點(diǎn)共線,∴eq\o(AB,\s\up6(→)),eq\o(BD,\s\up6(→))共線.設(shè)eq\o(AB,\s\up6(→))=λeq\o(BD,\s\up6(→)),∴2a+pb=λ(2a-b),∴2=2λ,p=-λ,∴λ=1,p=-1.如圖,已知AB是圓O的直徑,點(diǎn)C,D是半圓弧的兩個(gè)三等分點(diǎn),eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,則eq\o(AD,\s\up6(→))等于()A.a(chǎn)-eq\f(1,2)bB.eq\f(1,2)a-bC.a(chǎn)+eq\f(1,2)bD.eq\f(1,2)a+b解析連接CD,由點(diǎn)C,D是半圓弧的三等分點(diǎn),得CD∥AB且eq\o(CD,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))=eq\f(1,2)a,∴eq\o(AD,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(CD,\s\up6(→))=b+eq\f(1,2)a.設(shè)G為△ABC的重心,且sinA·eq\o(GA,\s\up6(→))+sinB·eq\o(GB,\s\up6(→))+sinC·eq\o(GC,\s\up6(→))=0,則B的大小為()A.45°B.60°C.30°D.15°解析∵G是△ABC的重心,∴eq\o(GA,\s\up6(→))+eq\o(GB,\s\up6(→))+eq\o(GC,\s\up6(→))=0,eq\o(GA,\s\up6(→))=-(eq\o(GB,\s\up6(→))+eq\o(GC,\s\up6(→))),將其代入sinA·eq\o(GA,\s\up6(→))+sinB·eq\o(GB,\s\up6(→))+sinC·eq\o(GC,\s\up6(→))=0,得(sinB-sinA)eq\o(GB,\s\up6(→))+(sinC-sinA)eq\o(GC,\s\up6(→))=0.又eq\o(GB,\s\up6(→)),eq\o(GC,\s\up6(→))不共線,∴sinB-sinA=0,sinC-sinA=0,則sinB=sinA=sinC.根據(jù)正弦定理知b=a=c,∴△ABC是等邊三角形,則角B=60°設(shè)e1與e2是兩個(gè)不共線向量,eq\o(AB,\s\up6(→))=3e1+2e2,eq\o(CB,\s\up6(→))=ke1+e2,eq\o(CD,\s\up6(→))=3e1-2ke2,若A,B,D三點(diǎn)共線,則k的值為()A.-eq\f(9,4)B.-eq\f(4,9)C.-eq\f(3,8)D.不存在解析由題意,A,B,D三點(diǎn)共線,故必存在一個(gè)實(shí)數(shù)λ,使得eq\o(AB,\s\up6(→))=λeq\o(BD,\s\up6(→)).又eq\o(AB,\s\up6(→))=3e1+2e2,eq\o(CB,\s\up6(→))=ke1+e2,eq\o(CD,\s\up6(→))=3e1-2ke2,∴eq\o(BD,\s\up6(→))=eq\o(CD,\s\up6(→))-eq\o(CB,\s\up6(→))=3e1-2ke2-(ke1+e2)=(3-k)e1-(2k+1)e2,∴3e1+2e2=λ(3-k)e1-λ(2k+1)e2,∴eq\b\lc\{\rc\(\a\vs4\al\co1(3=λ3-k,,2=-λ2k+1,))解得k=-eq\f(9,4).在□ABCD中,eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AN,\s\up6(→))=3eq\o(NC,\s\up6(→)),M為BC的中點(diǎn),則eq\o(MN,\s\up6(→))=__________(用a,b表示)解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物業(yè)公司承擔(dān)住宅小區(qū)垃圾清運(yùn)的合同
- 2025年度留置車輛處置借款合同4篇
- 2025年grc構(gòu)件生產(chǎn)線投資建設(shè)與運(yùn)營合同3篇
- 年度PAPTFE競爭策略分析報(bào)告
- 年度童書產(chǎn)業(yè)分析報(bào)告
- 2024-2025學(xué)年新教材高中語文基礎(chǔ)過關(guān)訓(xùn)練15諫逐客書含解析部編版必修下冊
- 二零二五版白糖倉儲物流服務(wù)合同范本2篇
- 2025年理療項(xiàng)目合作協(xié)議范本:特色理療項(xiàng)目合作框架協(xié)議3篇
- 2025年度中小企業(yè)間資金周轉(zhuǎn)互助合同范本
- 二零二五年度商業(yè)地產(chǎn)租賃合同中情勢變更處理辦法及責(zé)任劃分4篇
- 骨科手術(shù)后患者營養(yǎng)情況及營養(yǎng)不良的原因分析,骨傷科論文
- GB/T 24474.1-2020乘運(yùn)質(zhì)量測量第1部分:電梯
- GB/T 12684-2006工業(yè)硼化物分析方法
- 定崗定編定員實(shí)施方案(一)
- 高血壓患者用藥的注意事項(xiàng)講義課件
- 特種作業(yè)安全監(jiān)護(hù)人員培訓(xùn)課件
- (完整)第15章-合成生物學(xué)ppt
- 太平洋戰(zhàn)爭課件
- 封條模板A4打印版
- T∕CGCC 7-2017 焙烤食品用糖漿
- 貨代操作流程及規(guī)范
評論
0/150
提交評論