平面向量中三點共線_第1頁
平面向量中三點共線_第2頁
平面向量中三點共線_第3頁
平面向量中三點共線_第4頁
平面向量中三點共線_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

平面向量中三點共線定理的應(yīng)用知識梳理(一)、對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:(二)、三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當(dāng)點P在線段AB上時,當(dāng)點P在線段AB之外時,典例剖析已知是的邊上的任一點,且滿足,則的最小值是分析:點P落在的邊BC上B,P,C三點共線由基本不等式可知:,取等號時,符合所以的最小值為9點評:本題把平面三點共線問題與二元函數(shù)求最值、基本不等式巧妙地結(jié)合在一起,較綜合考查了學(xué)生基本功.例2、在△ABC中,,點P是BC上的一點,若,則實數(shù)m的值為()A.B.C.D.分析:三點共線,又,故選C例3、在△ABC中,點O是BC的中點,過點O的直線分別交直線AB、AC于不同的兩點M、N,若=m,=n,則m+n的值為.:因為O是BC的中點,故連接AO,如圖4,由向量加法的平行四邊形法則可知:,圖4又三點共線,圖4由平面內(nèi)三點共線定理可得:6、(2008年廣東卷)在平行四邊形中,與交于點是線段的中點,的延長線與交于點.若,,則()A.B.C. D.7、在平行四邊形ABCD中,,CE與BF相交于點G,記,,則=()A.B.C. D.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論