版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年湘教新版高一數(shù)學(xué)下冊(cè)月考試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、如果A={x|x>-1};那么()
A.0?A
B.{0}∈A
C.?∈A
D.{0}?A
2、設(shè)a>0,則()A.1B.2C.3D.43、【題文】設(shè)集合I="{"x︱︱x-2︱≤2,x∈N*};P="{"1,2,3},Q="{"2,3,4};
則I(P∩Q)=A.{1,4}B.{2,3}C.{1}D.{4}4、若函數(shù)f(x)=則f(log54)=()A.B.3C.D.45、若圓的圓心到直線x-y+a=0的距離為則a的值為()A.-2或2B.或C.2或0D.-2或0評(píng)卷人得分二、填空題(共7題,共14分)6、函數(shù)f(x)=-的定義域?yàn)開___.7、三個(gè)平面至少可將空間分成____部分,最多可將平面分成____部分.8、觀察下列數(shù)表:根據(jù)以上排列規(guī)律,數(shù)表中第行中所有數(shù)的和為。9、【題文】集合恰有三個(gè)真子集,則的取值范圍為____.10、有下列關(guān)系:
(1)名師出高徒;
(2)球的體積與該球的半徑之間的關(guān)系;
(3)蘋果的產(chǎn)量與氣候之間的關(guān)系;
(4)烏鴉叫;沒好兆;
(5)森林中的同一種樹;其斷面直徑與高度之間的關(guān)系;
(6)學(xué)生與他(她)的學(xué)號(hào)之間的關(guān)系.
其中,具有相關(guān)關(guān)系的是____.11、已知圓錐的表面積為9πcm2,且它的側(cè)面展開圖是一個(gè)半圓,則圓錐的底面半徑為____.12、已知函數(shù)f(x)=lg|x|,若f(1)<f(a),則實(shí)數(shù)a的取值范圍是______.評(píng)卷人得分三、計(jì)算題(共9題,共18分)13、(+++)(+1)=____.14、△ABC中,AB=AC=5厘米,BC=8厘米,⊙O分別切BC、AB、AC于D、E、F,那么⊙O半徑為____厘米.15、若直線y=(m-2)x+m經(jīng)過第一、二、四象限,則m的范圍是____.16、計(jì)算:.17、(2006?淮安校級(jí)自主招生)如圖,△ABC中,∠C=90°,O為AB上一點(diǎn),以O(shè)為圓心,OB為半徑的圓與AB相交于點(diǎn)E,與AC相切于點(diǎn)D,已知AD=2,AE=1,那么BC=____.18、如圖,AB是⊙O的直徑,過圓上一點(diǎn)D作⊙O的切線DE,與過點(diǎn)A的直線垂直于E,弦BD的延長(zhǎng)線與直線AE交于C點(diǎn).
(1)求證:點(diǎn)D為BC的中點(diǎn);
(2)設(shè)直線EA與⊙O的另一交點(diǎn)為F,求證:CA2-AF2=4CE?EA;
(3)若弧AD=弧DB,⊙O的半徑為r.求由線段DE,AE和弧AD所圍成的陰影部分的面積.19、(1)計(jì)算:|-|-+(π-4)0-sin30°;
(2)化簡(jiǎn):.20、計(jì)算:sin50°(1+tan10°).21、計(jì)算:()+()﹣3+.評(píng)卷人得分四、作圖題(共1題,共2分)22、畫出計(jì)算1++++的程序框圖.評(píng)卷人得分五、證明題(共3題,共15分)23、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.24、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.25、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評(píng)卷人得分六、綜合題(共4題,共28分)26、如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線AB切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線交⊙O2于點(diǎn)D;且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線段AB的解析式;
(3)在直線AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=的值,若不存在,說(shuō)明理由.27、已知函數(shù)f(x)=ax2+4x+b,其中a<0,a、b是實(shí)數(shù),設(shè)關(guān)于x的方程f(x)=0的兩根為x1,x2;f(x)=x的兩實(shí)根為α;β.
(1)若|α-β|=1,求a、b滿足的關(guān)系式;
(2)若a、b均為負(fù)整數(shù);且|α-β|=1,求f(x)解析式;
(3)試比較(x1+1)(x2+1)與7的大?。?8、(2011?青浦區(qū)二模)如圖,已知邊長(zhǎng)為3的等邊三角形ABC紙片,點(diǎn)E在AC邊上,點(diǎn)F在AB邊上,沿著EF折疊,使點(diǎn)A落在BC邊上的點(diǎn)D的位置,且ED⊥BC,則CE的長(zhǎng)是____.29、如圖,在矩形ABCD中,M是BC上一動(dòng)點(diǎn),DE⊥AM,E為垂足,3AB=2BC,并且AB,BC的長(zhǎng)是方程x2-(k-2)x+2k=0的兩個(gè)根;
(1)求k的值;
(2)當(dāng)點(diǎn)M離開點(diǎn)B多少距離時(shí),△AED的面積是△DEM面積的3倍?請(qǐng)說(shuō)明理由.參考答案一、選擇題(共5題,共10分)1、D【分析】
A.0為元素;而A={x|x>-1},為集合,元素與集合應(yīng)為屬于關(guān)系,屬于A錯(cuò)誤.
B.{0}為集合;集合和集合之間應(yīng)是包含關(guān)系,所以B錯(cuò)誤.
C.?為集合;集合和集合之間應(yīng)是包含關(guān)系,所以C錯(cuò)誤.
D.{0}為集合;且0∈A,所以{0}?A成立.
故選D.
【解析】【答案】利用元素和集合A的關(guān)系;以及集合Φ,{0}中元素與集合A的元素關(guān)系進(jìn)行判斷.
2、D【分析】【解析】試題分析:故選D??键c(diǎn):對(duì)數(shù)運(yùn)算【解析】【答案】D3、A【分析】【解析】故選A【解析】【答案】A4、D【分析】【解答】解:函數(shù)f(x)=log54∈(0;1)
則f(log54)==4.
故選:D.
【分析】直接利用分段函數(shù),求解函數(shù)值即可.5、C【分析】【解答】圓的圓心為根據(jù)點(diǎn)到直線的距離公式可得或
【分析】圓的一般方程當(dāng)時(shí)表示圓,圓心為點(diǎn)到直線的距離本題主要是兩公式的應(yīng)用,題目較簡(jiǎn)單二、填空題(共7題,共14分)6、略
【分析】
若使函數(shù)的解析式有意義;
自變量x須滿足。
解得3≤x<7
故函數(shù)的定義域?yàn)閇3;7)
故答案為:[3;7)
【解析】【答案】根據(jù)被開方數(shù)大于等于0,分母不為0,可得自變量x須滿足解不等式組可得函數(shù)的定義域.
7、略
【分析】
當(dāng)三個(gè)平面兩兩平行時(shí);可以把空間分成四部分;
當(dāng)兩個(gè)平面相交;第三個(gè)平面同時(shí)與兩個(gè)平面相交時(shí),把空間分成8部分;
故答案為:4;8
【解析】【答案】當(dāng)三個(gè)平面兩兩平行時(shí);可以把空間分成四部分,當(dāng)兩個(gè)平面相交,第三個(gè)平面同時(shí)與兩個(gè)平面相交時(shí),把空間分成8部分。
8、略
【分析】試題分析:根據(jù)以上排列規(guī)律,數(shù)表中第行中所有數(shù)為12122232n-12n-2211共2n-1項(xiàng),所有數(shù)的和為故答案為:考點(diǎn):歸納推理.【解析】【答案】9、略
【分析】【解析】略【解析】【答案】10、(1)(3)(5)【分析】【解答】解:(1)徒弟的水平在一定程度上與老師的水平有一點(diǎn)的關(guān)系;∴(1)具有相關(guān)關(guān)系.
(2)球的體積與該球的半徑之間是函數(shù)關(guān)系;不是相關(guān)關(guān)系;
(3)蘋果的產(chǎn)量受到氣候的影響;是相關(guān)關(guān)系;
(4)烏鴉叫與有沒有好兆;沒有必然的連續(xù),故不是相關(guān)關(guān)系;
(5)森林中的同一種樹;其斷面直徑與高度之間存在一定的關(guān)系,故是相關(guān)關(guān)系;
(6)學(xué)生與他(她)的學(xué)號(hào)之間是確定的;可以看做是函數(shù)關(guān)系,不是相關(guān)關(guān)系.
故答案為:(1)(3)(5)
【分析】根據(jù)相關(guān)關(guān)系的定義分別進(jìn)行判斷即可得到結(jié)論.11、cm【分析】【解答】解:設(shè)圓錐的底面的半徑為r,圓錐的母線為l,則由πl(wèi)=2πr得l=2r;
而S=πr2+πr?2r=3πr2=9π
故r2=3
解得r=cm.
故答案為:cm.
【分析】設(shè)出圓錐的底面半徑,由它的側(cè)面展開圖是一個(gè)半圓,分析出母線與半徑的關(guān)系,結(jié)合圓錐的表面積為9πcm2,構(gòu)造方程,可求出半徑.12、略
【分析】解:∵函數(shù)f(x)=lg|x|是偶函數(shù);
∴f(1)<f(a)可化為。
f(1<f(|a|);
又∵函數(shù)f(x)=lg|x|是(0;+∞)上的增函數(shù);
∴1<|a|;
故a>1或a<-1;
故答案為:a>1或a<-1.
由題意;f(1)<f(a)可化為f(1<f(|a|),再由函數(shù)f(x)=lg|x|是(0,+∞)上的增函數(shù)可得1<|a|,從而解得.
本題考查了函數(shù)的圖象與函數(shù)性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.【解析】a>1或a<-1三、計(jì)算題(共9題,共18分)13、略
【分析】【分析】先分母有理化,然后把括號(hào)內(nèi)合并后利用平方差公式計(jì)算.【解析】【解答】解:原式=(+++)?(+1)
=(-1+++-)?(+1)
=(-1)?(+1)
=2014-1
=2013.
故答案為2013.14、略
【分析】【分析】設(shè)圓O的半徑是r厘米,連接AO、OE、OF、OD、OB、0C,根據(jù)等腰三角形性質(zhì)求出AD⊥BC,根據(jù)勾股定理求出高AD,求出△ABC面積,根據(jù)S△ABC=S△ABO+S△BCO+S△ACO和三角形面積公式代入求出即可.【解析】【解答】解:設(shè)圓O的半徑是r厘米;
連接AO;OE、OF、OD、OB、0C;
則OE=OF=OD=r厘米;
∵△ABC中;AB=AC,⊙O分別切BC;AB、AC于D、E、F;
∴AD過O;AD⊥BC,OE⊥AB,OF⊥AC;
∴BD=DC=×8=4;
根據(jù)勾股定理得:AD==3;
∴S△ACB=BC×AD=×8×3=12;
∵S△ABC=S△ABO+S△BCO+S△ACO;
∴12=BCr+ABr+ACr;
∴r=;
故答案為:.15、略
【分析】【分析】若函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限,則k<0,b>0,由此可以確定m的取值范圍.【解析】【解答】解:∵直線y=(m-2)x+m經(jīng)過第一;二、四象限;
∴m-2<0;m>0;
故0<m<2.
故填空答案:0<m<2.16、略
【分析】【分析】本題涉及零指數(shù)冪、負(fù)指數(shù)冪、二次根式以及有理數(shù)的乘方4個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.【解析】【解答】解:原式=-8+1+4+3=-7+4+3=-3+3=0.17、略
【分析】【分析】連OD,根據(jù)切線的性質(zhì)得到OD⊥AC,在Rt△ADO中,設(shè)OD=R,AD=2,AE=1,利用勾股定理可計(jì)算出R=,則AO=;AB=4,再根據(jù)
OD∥BC,得到△AOD∽△ABC,利用相似比=,即可求出BC的長(zhǎng).【解析】【解答】解:連OD;如圖;
∵AC為⊙O的切線;
∴OD⊥AC;
在Rt△ADO中;設(shè)OD=R,AD=2,AE=1;
∴22+R2=(R+1)2;
解得R=;
∴AO=;AB=4;
又∵∠C=90°;
∴OD∥BC;
∴△AOD∽△ABC;
∴=;
即BC==.
故答案為:.18、略
【分析】【分析】(1)連接OD;ED為⊙O切線;由切線的性質(zhì)知:OD⊥DE;根據(jù)垂直于同一直線的兩條直線平行知:OD∥AC;由于O為AB中點(diǎn),則點(diǎn)D為BC中點(diǎn).
(2)連接BF;AB為⊙O直徑,根據(jù)直徑對(duì)的圓周角是直角知,∠CFB=∠CED=90°,根據(jù)垂直于同一直線的兩條直線平行知
ED∥BF由平行線的性質(zhì)知,由于點(diǎn)D為BC中點(diǎn),則點(diǎn)E為CF中點(diǎn),所以CA2-AF2=(CA-AF)(CA+AF)=(CE+AE-EF+AE)?CF=2AE?CF;將CF=2CE代入即可得出所求的結(jié)論.
(3)由于則弧AD是半圓ADB的三分之一,有∠AOD=180°÷3=60°;連接DA,可知等腰三角形△OAD為等邊三角形,則有OD=AD=r;在Rt△DEA中,由弦切角定理知:∠EDA=∠B=30°,可求得EA=r,ED=r,則有S陰影=S梯形AODE-S扇形AOD,從而可求得陰影部分的面積.【解析】【解答】(1)證明:連接OD;
∵ED為⊙O切線;∴OD⊥DE;
∵DE⊥AC;∴OD∥AC;
∵O為AB中點(diǎn);
∴D為BC中點(diǎn);
(2)證明:連接BF;
∵AB為⊙O直徑;
∴∠CFB=∠CED=90°;
∴ED∥BF;
∵D為BC中點(diǎn);
∴E為CF中點(diǎn);
∴CA2-AF2=(CA-AF)(CA+AF)
=(CE+AE-EF+AE)?CF=2AE?CF;
∴CA2-AF2=4CE?AE;
(3)解:∵,
∴∠AOD=60°;
連接DA;可知△OAD為等邊三角形;
∴OD=AD=r;
在Rt△DEA中;∠EDA=30°;
∴EA=r,ED=r;
∴S陰影=S梯形AODE-S扇形AOD=
=.19、略
【分析】【分析】(1)中,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);即9的算術(shù)平方根3;任何不等于0的數(shù)的0次冪都等于1;熟悉特殊角的銳角三角函數(shù)值:sin30°=;
(2)中,通過觀察括號(hào)內(nèi)的兩個(gè)分式正好是同分母,可以先算括號(hào)內(nèi)的,再約分計(jì)算.【解析】【解答】解:(1)原式==-2;
(2)原式=
=
=.20、解:sin50°(1+tan10°)
=sin50°(1+)
=
=
=
=
=1.【分析】【分析】首先,將正切化簡(jiǎn)為弦,然后,結(jié)合輔助角公式和誘導(dǎo)公式進(jìn)行化簡(jiǎn)即可.21、解:原式=+﹣3+=+﹣3+=6【分析】【分析】根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可四、作圖題(共1題,共2分)22、解:程序框圖如下:
【分析】【分析】根據(jù)題意,設(shè)計(jì)的程序框圖時(shí)需要分別設(shè)置一個(gè)累加變量S和一個(gè)計(jì)數(shù)變量i,以及判斷項(xiàng)數(shù)的判斷框.五、證明題(共3題,共15分)23、略
【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.24、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.25、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個(gè)外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.六、綜合題(共4題,共28分)26、略
【分析】【分析】(1)連接BO1,DO2,O2A作O1N⊥O2A于N,連接OA,根據(jù)切線長(zhǎng)定理求出AB的長(zhǎng),設(shè)O1B為r,根據(jù)勾股定理得到方程(4r)2-(2r)2=42;求出方程的解即可;
(2)求出∠CMO=∠NO1O2=30°,求出OM,設(shè)AB的解析式是y=kx+b;把C;M的坐標(biāo)代入得到方程組,求出方程組的解即可;
(3)①∠MO2P=30°,過B作BQ⊥OM于Q,求出MQ,BQ,過P'作P'W⊥X軸于W,根據(jù)相似三角形的性質(zhì)求出PW即可得到P的坐標(biāo),根據(jù)相似三角形的性質(zhì)求出k即可;②∠MO2P=120°,過P作PZ⊥X軸于Z,根據(jù)含30度角的直角三角形性質(zhì)求出PZ,即可得到P的坐標(biāo),根據(jù)相似三角形的性質(zhì)求出k即可.【解析】【解答】解:(1)連接BO1,O2A作O1N⊥O2A于N,連接OA,
∵直線AB切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A;交y軸于點(diǎn)C(0,2);
∴CA=CB;CA=CO(切線長(zhǎng)定理);
∴CA=CB=CO;
∴AB=2OC=4;
設(shè)O1B為r,由O1O22-O2N2=O1N2得(4r)2-(2r)2=42;
解得,3r=2;
答:⊙O2的半徑的長(zhǎng)為.
(2)∵O2N=3r-r=2r,O1O2=r+3r=4r;
∴∠NO1O2=30°;
∴∠CMO=∠NO1O2=30°;
∵OM==2;
M(-2;0);
設(shè)線段AB的解析式是y=kx+b;
把C、M的坐標(biāo)代入得:;
解得:k=,b=2;
∴線段AB的解析式為y=x+2(-≤x≤);
(3)△MOB是頂角為120°的等腰三角形,其底邊的長(zhǎng)為2,
假設(shè)滿足條件的點(diǎn)P存在;
①∠MO2P=30°;
過B作BQ⊥OM于Q;
∵OB=MB;
∴MQ=OQ=;
∵∠BMO=30°;
∴BQ=1;BM=2;
過P'作P'W⊥X軸于W;
∴P'W∥BQ;
∴==;
∴P'W=2;
即P'與C重合;
P'(0;2);
∴k==4;
②∠MO2P=120°;
過P作PZ⊥X軸于Z;
PO2=O2M=4,∠PO2Z=60°;
∴O2Z=2;
由勾股定理得:PZ=6;
∴P(4;6);
∴k==12;
答在直線AB上存在點(diǎn)P,使△MO2P與△MOB相似,點(diǎn)P的坐標(biāo)是(0,2)或(4,6),k的值是4或12.27、略
【分析】【分析】(1)根據(jù)f(x)=x的兩實(shí)根為α、β,可列出方程用a,b表示兩根α,β,根據(jù)|α-β|=1,可求出a、b滿足的關(guān)系式.
(2)根據(jù)(1)求出的結(jié)果和a、b均為負(fù)整數(shù),且|α-β|=1,可求出a,b;從而求出f(x)解析式.
(3)因?yàn)殛P(guān)于x的方程f(x)=0的兩根為x1,x2,用a和b表示出(x1+1)(x2+1),討論a,b的關(guān)系可比較(x1+1)(x2+1)與7的大小的結(jié)論.【解析】【解答】解:(1)∵f(x)=x;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)奶鹽蘇打餅干市場(chǎng)調(diào)查研究報(bào)告
- 《熱電偶的冷端補(bǔ)償》課件
- 一年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 《傳染病防治法》課件
- 一年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)匯編
- 電子產(chǎn)品研發(fā)貸款居間合同
- 茶葉加工用水供應(yīng)協(xié)議
- 展覽館石材搬運(yùn)服務(wù)協(xié)議
- 《稅收理論與制度》課件
- 餐飲空間裝修合同驗(yàn)收攻略
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- (人教PEP2024版)英語(yǔ)一年級(jí)上冊(cè)Unit 1 教學(xué)課件(新教材)
- 全國(guó)職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項(xiàng))考試題庫(kù)(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲(chǔ)電站儲(chǔ)能系統(tǒng)調(diào)試方案
- 2024年二級(jí)建造師繼續(xù)教育題庫(kù)及答案(500題)
- 小學(xué)數(shù)學(xué)二年級(jí)100以內(nèi)連加連減口算題
- 建設(shè)單位如何做好項(xiàng)目管理
- 三年級(jí)上遞等式計(jì)算400題
- 一次性餐具配送投標(biāo)方案
- 《中華民族多元一體格局》
評(píng)論
0/150
提交評(píng)論