安徽省皖江名校2024屆高三3月份兩校聯(lián)考數(shù)學(xué)試題_第1頁
安徽省皖江名校2024屆高三3月份兩校聯(lián)考數(shù)學(xué)試題_第2頁
安徽省皖江名校2024屆高三3月份兩校聯(lián)考數(shù)學(xué)試題_第3頁
安徽省皖江名校2024屆高三3月份兩校聯(lián)考數(shù)學(xué)試題_第4頁
安徽省皖江名校2024屆高三3月份兩校聯(lián)考數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省皖江名校2023屆高三3月份兩校聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.2.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位3.如圖,中,點(diǎn)D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得4.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長(zhǎng),且該三角形有一個(gè)內(nèi)角為,若對(duì)任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.35.已知是函數(shù)圖象上的一點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.6.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.7.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為,分別為拋物線與圓上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.8.已知向量,,且,則()A. B. C.1 D.29.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.9810.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}11.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.12.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.14.已知數(shù)列的前項(xiàng)和為,,且滿足,則數(shù)列的前10項(xiàng)的和為______.15.在平面直角坐標(biāo)系中,若函數(shù)在處的切線與圓存在公共點(diǎn),則實(shí)數(shù)的取值范圍為_____.16.若變量,滿足約束條件則的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,角,,的對(duì)邊分別為,,,的面積為.(1)求證:;(2)若,求的值.18.(12分)設(shè)函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調(diào)性;(2)證明:函數(shù)f(x)在R上有且僅有兩個(gè)零點(diǎn).19.(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)20.(12分)已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.(1)求橢圓E的標(biāo)準(zhǔn)方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.21.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個(gè)數(shù);(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說明理由.22.(10分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡(jiǎn)復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.2.D【解析】

根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.3.A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進(jìn)行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點(diǎn)作交于點(diǎn),過作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點(diǎn)睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4.C【解析】

若對(duì)任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.5.C【解析】

先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.6.B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.7.D【解析】

利用拋物線的定義,求得p的值,由利用兩點(diǎn)間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點(diǎn)在軸上,準(zhǔn)線方程,則點(diǎn)到焦點(diǎn)的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時(shí),取得最小值,最小值為,故選D.【點(diǎn)睛】該題考查的是有關(guān)距離的最小值問題,涉及到的知識(shí)點(diǎn)有拋物線的定義,點(diǎn)到圓上的點(diǎn)的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.8.A【解析】

根據(jù)向量垂直的坐標(biāo)表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點(diǎn)睛】本小題主要考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.9.C【解析】

由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.10.A【解析】

解出集合A和B即可求得兩個(gè)集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.11.C【解析】

利用復(fù)數(shù)的三角形式的乘法運(yùn)算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點(diǎn)睛】熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問題高考必考,常見考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.12.A【解析】

先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.14.1【解析】

由得時(shí),,兩式作差,可求得數(shù)列的通項(xiàng)公式,進(jìn)一步求出數(shù)列的和.【詳解】解:數(shù)列的前項(xiàng)和為,,且滿足,①當(dāng)時(shí),,②①-②得:,整理得:(常數(shù)),故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,所以(首項(xiàng)不符合通項(xiàng)),故,所以:,故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式的求法及應(yīng)用,數(shù)列的前項(xiàng)和的公式,屬于基礎(chǔ)題.15.【解析】

利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點(diǎn),利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時(shí)也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.16.9【解析】

做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標(biāo)函數(shù)過點(diǎn)時(shí)取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)利用,利用正弦定理,化簡(jiǎn)即可證明(2)利用(1),得到當(dāng)時(shí),,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當(dāng)時(shí),.又,∴,∴,∴.【點(diǎn)睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題18.見解析【解析】

(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當(dāng)x變化時(shí),f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以f(x)在區(qū)間,上單調(diào)遞減,在區(qū)間,上單調(diào)遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個(gè)零點(diǎn).顯然x∈(π,2π)時(shí),?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時(shí),f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點(diǎn).因?yàn)閒(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時(shí),f(x)>1,即f(x)在(?∞,?π)上也沒有零點(diǎn).故f(x)僅在,上各有一個(gè)零點(diǎn),即f(x)在R上有且僅有兩個(gè)零點(diǎn).19.(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)①詳見解析②期望;方差【解析】

(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問題,屬于基礎(chǔ)題.20.(1)(2)證明見解析【解析】

(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因?yàn)?,所以可設(shè)直線CD的方程為,將直線代入曲線的方程,利用韋達(dá)定理得到的關(guān)系,再代入斜率公式可證得為定值.【詳解】(1)設(shè)橢圓E的半焦距為c,由題意可知,當(dāng)M為橢圓E的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值.所以,所以,,故橢圓E的標(biāo)準(zhǔn)方程為.(2)根據(jù)題意可知,,因?yàn)?,所以可設(shè)直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程的求解、橢圓中的定值問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意坐標(biāo)法的運(yùn)用.21.(1)個(gè);(1)存在,.【解析】試題分析:(1)設(shè),對(duì)其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對(duì)和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個(gè)函數(shù)的圖象在上有兩個(gè)交點(diǎn),即在上零點(diǎn)的個(gè)數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對(duì)恒成立,則,對(duì)恒成立,即,對(duì)恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時(shí),,∴,∵,∴4.故當(dāng)時(shí),對(duì)恒成立,.......................8分當(dāng)即時(shí),在上遞減,∴.∵,∴,故當(dāng)時(shí),對(duì)恒成立............................10分②若對(duì)恒成立,則,∴...........11分由①及②得,.故存在實(shí)數(shù),使得對(duì)恒成立,且的取值范圍為.............................................

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論