海南工商職業(yè)學(xué)院《人工智能基礎(chǔ)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
海南工商職業(yè)學(xué)院《人工智能基礎(chǔ)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
海南工商職業(yè)學(xué)院《人工智能基礎(chǔ)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
海南工商職業(yè)學(xué)院《人工智能基礎(chǔ)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
海南工商職業(yè)學(xué)院《人工智能基礎(chǔ)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)海南工商職業(yè)學(xué)院

《人工智能基礎(chǔ)理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本和音頻。假設(shè)要開(kāi)發(fā)一個(gè)能夠同時(shí)理解圖像和文本內(nèi)容的系統(tǒng),以下哪個(gè)挑戰(zhàn)是最突出的?()A.數(shù)據(jù)的標(biāo)注和對(duì)齊B.模型的訓(xùn)練效率C.不同模態(tài)數(shù)據(jù)的特征提取D.模型的可擴(kuò)展性2、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)一個(gè)醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過(guò)分析大量的醫(yī)療影像和患者數(shù)據(jù)來(lái)給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對(duì)系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見(jiàn)疾病的診斷,對(duì)于罕見(jiàn)病無(wú)能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響3、在人工智能的自動(dòng)駕駛道德決策問(wèn)題中,假設(shè)自動(dòng)駕駛汽車面臨一個(gè)無(wú)法避免的碰撞場(chǎng)景,以下關(guān)于道德決策的描述,正確的是:()A.可以制定一套通用的道德規(guī)則,讓自動(dòng)駕駛汽車在所有情況下遵循B.道德決策應(yīng)該完全由汽車制造商決定,用戶沒(méi)有參與的權(quán)利C.不同的文化和價(jià)值觀可能導(dǎo)致對(duì)自動(dòng)駕駛道德決策的不同看法D.自動(dòng)駕駛汽車的道德決策不會(huì)受到法律和社會(huì)輿論的影響4、人工智能在智能家居領(lǐng)域的應(yīng)用不斷豐富。假設(shè)一個(gè)智能家居系統(tǒng)要利用人工智能實(shí)現(xiàn)自動(dòng)化控制,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)家庭成員的習(xí)慣和環(huán)境條件,自動(dòng)調(diào)整燈光、溫度和家電設(shè)備B.利用語(yǔ)音識(shí)別和自然語(yǔ)言處理技術(shù),實(shí)現(xiàn)與用戶的自然交互C.人工智能可以完全理解用戶的所有需求和意圖,不會(huì)出現(xiàn)誤解D.結(jié)合傳感器數(shù)據(jù)和機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)能源的高效管理和節(jié)約5、在人工智能的研究領(lǐng)域中,自然語(yǔ)言處理是重要的一部分。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語(yǔ)言的語(yǔ)義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語(yǔ)義網(wǎng)絡(luò)D.語(yǔ)音識(shí)別6、在人工智能的農(nóng)業(yè)應(yīng)用中,精準(zhǔn)農(nóng)業(yè)可以通過(guò)傳感器和數(shù)據(jù)分析實(shí)現(xiàn)對(duì)農(nóng)作物的精細(xì)化管理。假設(shè)要根據(jù)土壤濕度和氣象數(shù)據(jù)決定灌溉量,以下哪個(gè)技術(shù)環(huán)節(jié)是最關(guān)鍵的?()A.數(shù)據(jù)的采集和傳輸B.數(shù)據(jù)分析和建模C.灌溉設(shè)備的控制D.傳感器的校準(zhǔn)7、人工智能中的聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個(gè)機(jī)構(gòu)想要合作訓(xùn)練一個(gè)模型,但又不想共享原始數(shù)據(jù),以下哪個(gè)技術(shù)是聯(lián)邦學(xué)習(xí)的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計(jì)算框架D.數(shù)據(jù)脫敏8、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開(kāi)發(fā)一個(gè)能夠同時(shí)理解視頻中的圖像內(nèi)容和音頻解說(shuō)的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機(jī)制D.混合融合9、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場(chǎng)景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過(guò)與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對(duì)于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無(wú)需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過(guò)程中可能會(huì)經(jīng)歷多次失敗,但通過(guò)不斷嘗試最終能夠?qū)W會(huì)行走10、在人工智能的語(yǔ)音識(shí)別任務(wù)中,需要將人類的語(yǔ)音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語(yǔ)速和背景噪音下的語(yǔ)音,為了提高語(yǔ)音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語(yǔ)音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語(yǔ)音進(jìn)行識(shí)別11、在人工智能的文本分類任務(wù)中,除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)方法也取得了很好的效果。以下關(guān)于文本分類中深度學(xué)習(xí)方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以自動(dòng)學(xué)習(xí)文本的特征表示B.對(duì)于長(zhǎng)文本的處理能力優(yōu)于短文本C.不需要進(jìn)行特征工程D.訓(xùn)練數(shù)據(jù)量越大,效果一定越好12、在人工智能的發(fā)展歷程中,機(jī)器學(xué)習(xí)算法起到了關(guān)鍵作用。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠預(yù)測(cè)股票價(jià)格走勢(shì)的模型,需要處理大量的歷史交易數(shù)據(jù)和財(cái)務(wù)報(bào)表等信息。以下關(guān)于選擇機(jī)器學(xué)習(xí)算法的考慮,哪一項(xiàng)是最為重要的?()A.選擇簡(jiǎn)單直觀的線性回歸算法,因?yàn)槠湟子诶斫夂徒忉孊.采用復(fù)雜的深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò),以捕捉數(shù)據(jù)中的復(fù)雜模式C.運(yùn)用決策樹(shù)算法,其能夠生成易于理解的規(guī)則D.隨機(jī)選擇一種算法,碰碰運(yùn)氣13、人工智能中的語(yǔ)音識(shí)別技術(shù)在智能語(yǔ)音交互中起著重要作用。假設(shè)我們要提高語(yǔ)音識(shí)別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說(shuō)法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語(yǔ)音信號(hào)的采樣率D.采用噪聲抑制技術(shù)14、在自然語(yǔ)言處理中,機(jī)器翻譯是一個(gè)重要的應(yīng)用。假設(shè)正在開(kāi)發(fā)一種新的機(jī)器翻譯模型,以下關(guān)于機(jī)器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機(jī)器翻譯方法總是能夠生成最準(zhǔn)確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯模型不需要大量的平行語(yǔ)料進(jìn)行訓(xùn)練就能達(dá)到很好的效果C.結(jié)合統(tǒng)計(jì)方法和神經(jīng)網(wǎng)絡(luò)的機(jī)器翻譯模型能夠更好地處理復(fù)雜的語(yǔ)言結(jié)構(gòu)和語(yǔ)義D.機(jī)器翻譯的質(zhì)量只取決于所使用的算法,與語(yǔ)言的文化背景和語(yǔ)境無(wú)關(guān)15、人工智能在藝術(shù)創(chuàng)作領(lǐng)域的探索引起了廣泛關(guān)注。假設(shè)要利用人工智能生成音樂(lè)作品,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)算法學(xué)習(xí)大量的音樂(lè)作品,生成新的旋律和節(jié)奏B.可以與人類音樂(lè)家合作,共同創(chuàng)作出獨(dú)特的音樂(lè)作品C.人工智能生成的音樂(lè)作品在藝術(shù)價(jià)值和創(chuàng)造性上能夠超越人類音樂(lè)家的作品D.為音樂(lè)創(chuàng)作提供新的靈感和可能性,但不能完全取代人類的創(chuàng)造力16、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率17、在人工智能的推薦系統(tǒng)中,為用戶提供個(gè)性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個(gè)電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過(guò)濾推薦C.隨機(jī)推薦D.混合推薦18、人工智能中的知識(shí)圖譜是一種結(jié)構(gòu)化的知識(shí)表示方法。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下哪個(gè)方面是需要重點(diǎn)考慮的?()A.事件的時(shí)間順序B.事件的參與者C.事件的影響力評(píng)估D.以上都是19、在人工智能的文本摘要生成中,以下哪種方法可能導(dǎo)致生成的摘要與原文主題偏離?()A.過(guò)度依賴原文中的高頻詞匯B.未能理解原文的語(yǔ)義結(jié)構(gòu)C.忽略原文中的關(guān)鍵信息D.以上都有可能20、人工智能在金融風(fēng)險(xiǎn)預(yù)測(cè)中具有應(yīng)用潛力。假設(shè)要預(yù)測(cè)股票市場(chǎng)的波動(dòng),以下哪種數(shù)據(jù)來(lái)源可能對(duì)預(yù)測(cè)結(jié)果的準(zhǔn)確性提升幫助最???()A.公司的財(cái)務(wù)報(bào)表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟(jì)指標(biāo)21、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個(gè)性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過(guò)濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點(diǎn),能夠提供更準(zhǔn)確的推薦D.以上推薦算法都存在一定的局限性,無(wú)法滿足所有用戶的需求22、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來(lái)衡量模型的性能。假設(shè)評(píng)估一個(gè)分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無(wú)需考慮其他指標(biāo)23、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評(píng)估、投資決策和欺詐檢測(cè)等。假設(shè)一個(gè)銀行正在使用人工智能進(jìn)行風(fēng)險(xiǎn)評(píng)估,以下關(guān)于金融領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全取代人類專家的判斷,獨(dú)立做出準(zhǔn)確的風(fēng)險(xiǎn)評(píng)估和投資決策B.數(shù)據(jù)的質(zhì)量和完整性對(duì)人工智能在金融領(lǐng)域的應(yīng)用效果沒(méi)有影響C.結(jié)合人工智能模型和人類專家的經(jīng)驗(yàn),可以更有效地進(jìn)行金融風(fēng)險(xiǎn)評(píng)估和管理D.人工智能在金融領(lǐng)域的應(yīng)用不存在任何風(fēng)險(xiǎn)和監(jiān)管挑戰(zhàn)24、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺(jué)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)、圖像分類和語(yǔ)義分割是計(jì)算機(jī)視覺(jué)中的常見(jiàn)任務(wù)B.計(jì)算機(jī)視覺(jué)技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域C.計(jì)算機(jī)視覺(jué)系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺(jué)技術(shù)的發(fā)展25、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評(píng)估、欺詐檢測(cè)等。假設(shè)一家銀行要利用人工智能進(jìn)行客戶信用評(píng)估。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來(lái)評(píng)估信用風(fēng)險(xiǎn)B.人工智能模型能夠自適應(yīng)地學(xué)習(xí)和更新,以適應(yīng)不斷變化的金融市場(chǎng)環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機(jī)構(gòu)降低成本,提高風(fēng)險(xiǎn)控制的準(zhǔn)確性和效率26、在人工智能的目標(biāo)檢測(cè)任務(wù)中,假設(shè)圖像中存在多個(gè)不同大小和形狀的目標(biāo),且目標(biāo)之間存在遮擋。以下哪種檢測(cè)算法能夠較好地應(yīng)對(duì)這種復(fù)雜情況?()A.FasterR-CNN,基于區(qū)域建議網(wǎng)絡(luò)B.YOLO(YouOnlyLookOnce),一次性檢測(cè)所有目標(biāo)C.SSD(SingleShotMultiBoxDetector),多尺度檢測(cè)D.以上都是27、人工智能在物流領(lǐng)域的應(yīng)用能夠提高物流效率和服務(wù)質(zhì)量。以下關(guān)于人工智能在物流應(yīng)用的敘述,不正確的是()A.可以通過(guò)路徑規(guī)劃算法優(yōu)化貨物運(yùn)輸路線,降低運(yùn)輸成本B.利用圖像識(shí)別技術(shù)實(shí)現(xiàn)貨物的自動(dòng)分揀和識(shí)別C.人工智能在物流領(lǐng)域的應(yīng)用面臨數(shù)據(jù)安全和隱私保護(hù)等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿足需求28、人工智能在工業(yè)生產(chǎn)中的質(zhì)量檢測(cè)方面有廣泛應(yīng)用。假設(shè)要開(kāi)發(fā)一個(gè)能夠檢測(cè)產(chǎn)品缺陷的系統(tǒng),需要考慮光照、拍攝角度等因素對(duì)圖像的影響。以下關(guān)于解決這些影響的方法,哪一項(xiàng)是不正確的?()A.使用多光源和多角度拍攝,獲取更全面的產(chǎn)品圖像B.對(duì)圖像進(jìn)行預(yù)處理,如歸一化和標(biāo)準(zhǔn)化,減少光照和角度的影響C.忽略光照和角度的變化,依靠模型的自適應(yīng)能力D.建立光照和角度的模型,對(duì)圖像進(jìn)行校正29、人工智能在教育領(lǐng)域有潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化學(xué)習(xí)系統(tǒng),能夠根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)計(jì)劃。以下關(guān)于收集學(xué)生學(xué)習(xí)數(shù)據(jù)的方法,哪一項(xiàng)是需要謹(jǐn)慎處理的?()A.跟蹤學(xué)生在在線學(xué)習(xí)平臺(tái)上的學(xué)習(xí)時(shí)間、答題情況等B.收集學(xué)生的個(gè)人興趣愛(ài)好和家庭背景等信息C.分析學(xué)生的作業(yè)和考試成績(jī),了解其知識(shí)掌握程度D.通過(guò)問(wèn)卷調(diào)查了解學(xué)生的學(xué)習(xí)風(fēng)格和偏好30、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)具有強(qiáng)大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項(xiàng)是不正確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實(shí)數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實(shí)性上可以與真實(shí)拍攝的圖像完全無(wú)法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)通過(guò)強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的環(huán)境中進(jìn)行資源管理和優(yōu)化,提高資源的可持續(xù)利用性。2、(本題5分)借助TensorFlow構(gòu)建一個(gè)深度強(qiáng)化學(xué)習(xí)模型,讓智能體學(xué)習(xí)在一個(gè)模擬的交通信號(hào)燈控制系統(tǒng)中優(yōu)化信號(hào)燈的切換策略,以減少交通擁堵。設(shè)計(jì)交通環(huán)境和車輛行為模型,觀察智能體在不同交通流量情況下的控制效果和對(duì)交通流暢性的提升。3、(本題5分)運(yùn)用自然語(yǔ)言處理技術(shù),對(duì)金融新聞進(jìn)行情感分析和事件抽取。為投資決策提供參考。4、(本題5分)借助Scikit-learn中的決策樹(shù)回歸算法,對(duì)股票價(jià)格走勢(shì)進(jìn)行預(yù)測(cè)。分析模型的預(yù)測(cè)能力和誤差情況。5、(本題5分)使用機(jī)器學(xué)習(xí)算法對(duì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論