版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)內(nèi)蒙古電子信息職業(yè)技術(shù)學(xué)院《區(qū)塊鏈基礎(chǔ)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無(wú)需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類型和任務(wù),不能跨越不同領(lǐng)域2、深度學(xué)習(xí)在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來(lái)識(shí)別不同種類的動(dòng)物。如果訓(xùn)練數(shù)據(jù)中某些動(dòng)物類別的樣本數(shù)量過(guò)少,可能會(huì)導(dǎo)致什么問(wèn)題?()A.模型過(guò)擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準(zhǔn)確率提高3、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實(shí)體之間的關(guān)系。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史人物和事件的知識(shí)圖譜,以下哪種數(shù)據(jù)源對(duì)于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價(jià)值的?()A.百科全書(shū)和歷史書(shū)籍B.社交媒體上的相關(guān)討論C.個(gè)人博客和論壇帖子D.未經(jīng)證實(shí)的網(wǎng)絡(luò)傳聞4、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。假設(shè)多個(gè)機(jī)構(gòu)想要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)中,各機(jī)構(gòu)的數(shù)據(jù)需要集中到一個(gè)中心服務(wù)器進(jìn)行統(tǒng)一訓(xùn)練B.聯(lián)邦學(xué)習(xí)能夠在不共享原始數(shù)據(jù)的情況下實(shí)現(xiàn)模型的協(xié)同訓(xùn)練C.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型結(jié)構(gòu)D.聯(lián)邦學(xué)習(xí)過(guò)程中不存在數(shù)據(jù)安全和隱私泄露的風(fēng)險(xiǎn)5、深度學(xué)習(xí)模型在圖像識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域取得了巨大的成功,但也面臨著過(guò)擬合、計(jì)算資源需求大等挑戰(zhàn)。假設(shè)要訓(xùn)練一個(gè)深度神經(jīng)網(wǎng)絡(luò)來(lái)識(shí)別各種動(dòng)物的圖像,然而數(shù)據(jù)量有限,為了避免過(guò)擬合同時(shí)提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓(xùn)練輪數(shù)C.使用數(shù)據(jù)增強(qiáng)技術(shù)D.降低學(xué)習(xí)率6、人工智能在智能推薦系統(tǒng)中發(fā)揮著重要作用。例如,電商平臺(tái)通過(guò)分析用戶的購(gòu)買歷史和瀏覽行為為用戶推薦商品。以下關(guān)于智能推薦系統(tǒng)的描述,哪一項(xiàng)是不正確的?()A.推薦系統(tǒng)可以基于用戶的協(xié)同過(guò)濾進(jìn)行推薦B.推薦系統(tǒng)只考慮用戶的近期行為,忽略歷史行為C.推薦系統(tǒng)可以結(jié)合內(nèi)容過(guò)濾和協(xié)同過(guò)濾提高推薦效果D.推薦系統(tǒng)需要不斷更新和優(yōu)化以適應(yīng)用戶興趣的變化7、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計(jì)算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過(guò)剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會(huì)導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計(jì)算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對(duì)于大型復(fù)雜模型效果不佳D.這些技術(shù)對(duì)于在資源受限的設(shè)備上部署人工智能模型具有重要意義8、人工智能中的自動(dòng)機(jī)器學(xué)習(xí)(AutoML)旨在自動(dòng)化模型的選擇和調(diào)優(yōu)過(guò)程。假設(shè)一個(gè)企業(yè)沒(méi)有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來(lái)構(gòu)建模型。以下關(guān)于自動(dòng)機(jī)器學(xué)習(xí)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.AutoML可以自動(dòng)搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開(kāi)發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家手動(dòng)構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性9、人工智能在教育領(lǐng)域有著潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化的學(xué)習(xí)系統(tǒng)。以下關(guān)于人工智能在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能教育系統(tǒng)可以完全取代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.有助于發(fā)現(xiàn)學(xué)生的學(xué)習(xí)問(wèn)題和知識(shí)漏洞,提高教學(xué)效果10、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺(jué)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)、圖像分類和語(yǔ)義分割是計(jì)算機(jī)視覺(jué)中的常見(jiàn)任務(wù)B.計(jì)算機(jī)視覺(jué)技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域C.計(jì)算機(jī)視覺(jué)系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺(jué)技術(shù)的發(fā)展11、假設(shè)要構(gòu)建一個(gè)能夠自主學(xué)習(xí)并改進(jìn)其性能的人工智能圖像識(shí)別系統(tǒng),用于識(shí)別不同種類的動(dòng)物。在訓(xùn)練過(guò)程中,需要處理大量的圖像數(shù)據(jù),以下哪種機(jī)器學(xué)習(xí)算法可能最為適合?()A.決策樹(shù)B.支持向量機(jī)C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)D.樸素貝葉斯12、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用包括作物監(jiān)測(cè)、病蟲(chóng)害預(yù)測(cè)等。假設(shè)要利用人工智能技術(shù)預(yù)測(cè)農(nóng)作物的病蟲(chóng)害發(fā)生情況,以下關(guān)于農(nóng)業(yè)領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.僅依靠氣象數(shù)據(jù)就能準(zhǔn)確預(yù)測(cè)農(nóng)作物的病蟲(chóng)害發(fā)生B.人工智能在農(nóng)業(yè)中的應(yīng)用成本過(guò)高,不具有實(shí)際推廣價(jià)值C.綜合考慮農(nóng)作物的生長(zhǎng)環(huán)境、圖像數(shù)據(jù)和歷史病蟲(chóng)害信息等,可以提高病蟲(chóng)害預(yù)測(cè)的準(zhǔn)確性D.農(nóng)業(yè)領(lǐng)域的數(shù)據(jù)質(zhì)量和多樣性對(duì)人工智能應(yīng)用的效果沒(méi)有影響13、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測(cè)B.微調(diào)原模型的部分層C.重新訓(xùn)練一個(gè)新的模型D.對(duì)原模型進(jìn)行壓縮14、在人工智能的研究中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)一個(gè)醫(yī)療決策支持系統(tǒng)基于人工智能模型給出診斷建議。以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可解釋性有助于醫(yī)生和患者理解模型的決策依據(jù),增加信任度B.一些復(fù)雜的深度學(xué)習(xí)模型由于其內(nèi)部運(yùn)作的復(fù)雜性,往往具有較低的可解釋性C.為了提高模型的性能,可以犧牲一定的可解釋性D.可解釋性對(duì)于所有類型的人工智能應(yīng)用都是同等重要的,沒(méi)有優(yōu)先級(jí)之分15、人工智能在金融風(fēng)險(xiǎn)管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測(cè)市場(chǎng)風(fēng)險(xiǎn),以下關(guān)于模型評(píng)估指標(biāo)的選擇,哪一項(xiàng)是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測(cè)的比例B.召回率,即模型正確識(shí)別出風(fēng)險(xiǎn)的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測(cè)值與實(shí)際值之間的差異16、知識(shí)圖譜是一種用于表示知識(shí)和關(guān)系的結(jié)構(gòu)化數(shù)據(jù)模型。以下關(guān)于知識(shí)圖譜的說(shuō)法,不正確的是()A.知識(shí)圖譜可以整合來(lái)自不同來(lái)源的知識(shí),構(gòu)建一個(gè)全面的知識(shí)體系B.知識(shí)圖譜中的節(jié)點(diǎn)表示實(shí)體,邊表示實(shí)體之間的關(guān)系C.知識(shí)圖譜在智能搜索、推薦系統(tǒng)和問(wèn)答系統(tǒng)等領(lǐng)域有著重要的應(yīng)用D.構(gòu)建知識(shí)圖譜非常簡(jiǎn)單,不需要大量的人力和時(shí)間投入17、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動(dòng)作。假設(shè)一個(gè)智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項(xiàng)是錯(cuò)誤的?()A.智能代理可以通過(guò)學(xué)習(xí)和經(jīng)驗(yàn)積累來(lái)改進(jìn)自己的策略B.它能夠根據(jù)環(huán)境的變化實(shí)時(shí)調(diào)整自己的行為,以達(dá)到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無(wú)法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個(gè)智能代理之間可以通過(guò)協(xié)作或競(jìng)爭(zhēng)來(lái)實(shí)現(xiàn)更復(fù)雜的任務(wù)18、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的學(xué)習(xí)能力。假設(shè)我們正在訓(xùn)練一個(gè)多層神經(jīng)網(wǎng)絡(luò)來(lái)預(yù)測(cè)股票價(jià)格的走勢(shì)。如果網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)包含了過(guò)多的噪聲,會(huì)產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強(qiáng)B.網(wǎng)絡(luò)的訓(xùn)練速度加快C.網(wǎng)絡(luò)可能對(duì)新的數(shù)據(jù)預(yù)測(cè)不準(zhǔn)確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復(fù)雜19、人工智能中的模型壓縮技術(shù)用于減少模型的參數(shù)和計(jì)算量。假設(shè)要在資源受限的設(shè)備上部署一個(gè)大型的神經(jīng)網(wǎng)絡(luò)模型,以下關(guān)于模型壓縮的描述,正確的是:()A.剪枝技術(shù)通過(guò)刪除不重要的神經(jīng)元和連接來(lái)壓縮模型,不會(huì)影響模型性能B.量化技術(shù)將模型的參數(shù)從浮點(diǎn)數(shù)轉(zhuǎn)換為整數(shù),會(huì)導(dǎo)致較大的精度損失C.知識(shí)蒸餾將復(fù)雜模型的知識(shí)轉(zhuǎn)移到簡(jiǎn)單模型中,但效果不如直接使用復(fù)雜模型D.模型壓縮技術(shù)會(huì)犧牲一定的模型性能,但可以顯著提高模型的部署效率20、在深度學(xué)習(xí)中,BatchNormalization的作用是()A.加速訓(xùn)練B.防止過(guò)擬合C.提高模型精度D.以上都是21、在人工智能的決策樹(shù)算法中,當(dāng)進(jìn)行特征選擇來(lái)構(gòu)建決策樹(shù)時(shí),以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹(shù)?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征22、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評(píng)估一個(gè)深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個(gè)指標(biāo)是最重要的?()A.準(zhǔn)確率B.召回率C.F1值D.特異性23、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨諸多挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù)的描述,正確的是:()A.自動(dòng)駕駛汽車完全依賴傳感器數(shù)據(jù)和人工智能算法,不需要人類駕駛員的任何干預(yù)B.人工智能算法能夠在所有復(fù)雜的交通場(chǎng)景中做出完美的決策,不會(huì)出現(xiàn)錯(cuò)誤C.自動(dòng)駕駛系統(tǒng)需要融合多種傳感器數(shù)據(jù),并通過(guò)深度學(xué)習(xí)算法進(jìn)行實(shí)時(shí)的環(huán)境感知和決策制定D.自動(dòng)駕駛中的人工智能技術(shù)已經(jīng)非常成熟,不存在任何安全隱患24、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開(kāi)發(fā)一個(gè)能夠同時(shí)理解視頻中的圖像內(nèi)容和音頻解說(shuō)的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機(jī)制D.混合融合25、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂(lè)生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂(lè)作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論26、人工智能中的遷移學(xué)習(xí)方法可以提高模型的泛化能力。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于特定領(lǐng)域的圖像識(shí)別任務(wù),以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.可以將預(yù)訓(xùn)練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進(jìn)行微調(diào)B.能夠利用已有的知識(shí)和特征,減少在新任務(wù)上的數(shù)據(jù)標(biāo)注和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)在任何情況下都能顯著提高新任務(wù)的模型性能D.需要根據(jù)新任務(wù)的特點(diǎn)選擇合適的預(yù)訓(xùn)練模型和遷移策略27、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個(gè)重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對(duì)大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺(jué)的細(xì)微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨(dú)立做出準(zhǔn)確的判斷C.有助于提高診斷的效率和準(zhǔn)確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗(yàn)和專業(yè)知識(shí)進(jìn)行綜合判斷28、在人工智能的機(jī)器翻譯任務(wù)中,為了提高翻譯的質(zhì)量和準(zhǔn)確性,尤其是對(duì)于具有特定領(lǐng)域知識(shí)的文本,以下哪種策略可能是有效的?()A.使用大規(guī)模通用語(yǔ)料庫(kù)B.引入領(lǐng)域特定的詞典和知識(shí)C.優(yōu)化神經(jīng)網(wǎng)絡(luò)架構(gòu)D.以上都是29、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用30、在人工智能的聚類分析中,例如將客戶按照消費(fèi)行為進(jìn)行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進(jìn)行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進(jìn)行分組D.隨機(jī)聚類算法,隨機(jī)分配數(shù)據(jù)到不同組二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Scikit-learn中的主成分分析(PCA)算法對(duì)基因表達(dá)數(shù)據(jù)進(jìn)行降維,可視化降維后的結(jié)果。分析主成分的貢獻(xiàn)率和數(shù)據(jù)在低維空間中的分布,探索數(shù)據(jù)中的潛在結(jié)構(gòu)和模式。2、(本題5分)在Python中,運(yùn)用進(jìn)化策略優(yōu)化一個(gè)函數(shù)的參數(shù)。定義適應(yīng)度函數(shù)和變異操作,展示進(jìn)化過(guò)程和最終的優(yōu)化結(jié)果。3、(本題5分)利用Scikit-learn中的隨機(jī)森林算法,對(duì)客戶的購(gòu)買行為數(shù)據(jù)進(jìn)行預(yù)測(cè),判斷客戶是否會(huì)購(gòu)買某一產(chǎn)品。分析特征的重要性,評(píng)估模型的性能指標(biāo)。4、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于膠囊網(wǎng)絡(luò)(CapsNet)的圖像分類模型。比較CapsNet與傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)的性能差異。5、(本題5分)運(yùn)用深度學(xué)習(xí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預(yù)拌砂漿產(chǎn)業(yè)鏈上下游產(chǎn)業(yè)轉(zhuǎn)型升級(jí)合作合同3篇
- 三方車輛租賃協(xié)議2024版專業(yè)模板版
- 廣東省揭陽(yáng)市2025年中考語(yǔ)文模擬試卷五套【附參考答案】
- 2024年餐具回收利用協(xié)議3篇
- 12 慧眼看交通 第1課時(shí) 說(shuō)課稿-2023-2024學(xué)年道德與法治三年級(jí)下冊(cè)統(tǒng)編版
- 2024年版國(guó)際制藥行業(yè)技術(shù)轉(zhuǎn)移合同
- 2024樣板間房地產(chǎn)買賣合同模板3篇
- 專業(yè)辣椒經(jīng)銷商2024年度購(gòu)貨協(xié)議版B版
- 2024水利工程環(huán)境監(jiān)理規(guī)范執(zhí)行操作指導(dǎo)合同范本3篇
- 福建省南平市塔前中學(xué)高二地理聯(lián)考試卷含解析
- 兒科課件過(guò)敏性紫癜
- 直腸癌臨床路徑
- 綠化養(yǎng)護(hù)工作計(jì)劃表
- 漢字拼寫(xiě)游戲
- GB/T 12310-2012感官分析方法成對(duì)比較檢驗(yàn)
- FZ/T 70010-2006針織物平方米干燥重量的測(cè)定
- 銀行貸款批復(fù)樣本
- 正數(shù)負(fù)數(shù)練習(xí)題
- QC成果提高內(nèi)隔墻ALC板材安裝質(zhì)量
- 韓國(guó)文化-課件
- 出院健康宣教課件
評(píng)論
0/150
提交評(píng)論