版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁銅仁幼兒師范高等??茖W?!对O(shè)計素描》
2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、當進行圖像的光流估計時,假設(shè)要計算圖像中像素的運動速度和方向。以下哪種光流估計算法在復雜場景下可能更準確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機估計光流D.不進行光流估計,忽略像素的運動信息2、在計算機視覺的三維重建任務中,假設(shè)要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準確的三維重建結(jié)果,以下哪種技術(shù)是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進行簡單的重建D.隨機生成三維模型,然后與二維圖像進行匹配3、在計算機視覺的姿態(tài)估計任務中,需要確定物體在三維空間中的方向和位置。假設(shè)要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結(jié)構(gòu)時準確性更高?()A.基于模型的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計4、在計算機視覺的人臉識別任務中,假設(shè)要在一個大型數(shù)據(jù)庫中快速準確地識別出特定人物的面部。數(shù)據(jù)庫中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機選擇人臉特征進行匹配5、在計算機視覺中,目標檢測是一項重要任務。假設(shè)要在一張包含多種物體的圖像中準確檢測出汽車的位置和類別。以下關(guān)于目標檢測算法的描述,正確的是:()A.傳統(tǒng)的基于特征提取和分類器的方法在復雜場景下檢測效果優(yōu)于深度學習方法B.深度學習中的FasterR-CNN算法通過生成候選區(qū)域和分類回歸,能夠?qū)崿F(xiàn)高精度的目標檢測C.目標檢測算法只關(guān)注物體的外觀特征,不考慮物體之間的空間關(guān)系D.所有的目標檢測算法對于小目標的檢測都具有同樣出色的性能6、在計算機視覺的人臉識別任務中,需要應對姿態(tài)、表情和光照等變化。假設(shè)要構(gòu)建一個能夠在不同環(huán)境下準確識別人臉的系統(tǒng),以下哪種人臉識別方法在處理這些變化時具有更高的準確性和魯棒性?()A.基于特征點的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別D.基于幾何形狀的人臉識別7、計算機視覺在農(nóng)業(yè)領(lǐng)域的應用中,例如對農(nóng)作物的生長監(jiān)測。假設(shè)要通過圖像分析評估農(nóng)作物的健康狀況,以下哪種特征可能對判斷病蟲害的存在較為敏感?()A.農(nóng)作物的顏色和紋理B.農(nóng)作物的高度和形狀C.農(nóng)田的土壤濕度D.農(nóng)田的地理位置8、在計算機視覺的圖像檢索任務中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進行相似性度量和檢索B.深度學習模型能夠提取更具語義和判別力的特征,提高圖像檢索的準確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果9、當進行圖像的風格遷移任務時,假設(shè)要將一張照片的風格轉(zhuǎn)換為著名繪畫的風格,同時保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實現(xiàn)這一目標時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡的風格遷移算法,如Gatys等人提出的方法B.對圖像進行簡單的色彩變換和濾鏡處理C.隨機改變圖像的像素值來模擬風格遷移D.只對圖像的邊緣進行處理,忽略內(nèi)部區(qū)域10、在計算機視覺的行人檢測任務中,假設(shè)要在一個擁擠的街道場景中準確檢測出行人,場景中存在光照變化、人群遮擋和復雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學習的特征,通過卷積神經(jīng)網(wǎng)絡自動學習D.不提取任何特征,直接對原始圖像進行檢測11、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學習的方法D.基于學習字典的方法12、計算機視覺中的圖像修復旨在恢復圖像中缺失或損壞的部分。假設(shè)一張珍貴的老照片有部分區(qū)域損壞,需要進行修復以還原其完整的內(nèi)容。以下哪種圖像修復方法在處理這種情況時能夠生成更自然和逼真的結(jié)果?()A.基于擴散的圖像修復B.基于紋理合成的圖像修復C.基于深度學習的圖像修復D.基于樣例的圖像修復13、在計算機視覺的場景理解任務中,假設(shè)要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關(guān)重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析14、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設(shè)要對醫(yī)學圖像進行器官分割,以下關(guān)于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠?qū)崿F(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割15、計算機視覺中的深度估計是計算場景中物體與相機的距離。假設(shè)我們要為一個增強現(xiàn)實應用估計場景的深度信息,以下哪種深度估計方法能夠在實時性和準確性之間取得較好的平衡?()A.基于立體視覺的方法B.基于結(jié)構(gòu)光的方法C.基于深度學習的單目深度估計方法D.基于飛行時間(ToF)原理的方法16、計算機視覺在醫(yī)學圖像分析中有著重要作用。假設(shè)要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓練中數(shù)據(jù)標注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標注B.眼底圖像的質(zhì)量參差不齊,影響標注準確性C.標注人員的醫(yī)學知識不足,導致標注錯誤D.數(shù)據(jù)量過大,標注工作耗時費力17、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學習架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(RNN)C.生成對抗網(wǎng)絡(GAN)D.自動編碼器(Autoencoder)18、在計算機視覺中,以下哪種方法常用于圖像的顯著目標檢測中的高層語義信息利用?()A.深度學習B.圖模型C.注意力機制D.以上都是19、計算機視覺中的視頻理解任務包括對視頻內(nèi)容的分析和解釋。假設(shè)要理解一段新聞視頻的主要內(nèi)容和事件發(fā)展。以下關(guān)于視頻理解的描述,哪一項是不正確的?()A.可以通過對視頻中的幀進行分類、目標檢測和跟蹤來實現(xiàn)視頻理解B.深度學習中的注意力機制可以幫助聚焦視頻中的關(guān)鍵信息,提高理解的準確性C.視頻理解只需要關(guān)注視覺信息,不需要考慮音頻和文字等其他模態(tài)的信息D.可以結(jié)合知識圖譜和語義理解技術(shù),對視頻中的內(nèi)容進行更深入的分析和解釋20、計算機視覺中的醫(yī)學圖像分析對于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學圖像分析的描述,不準確的是()A.可以對X光、CT、MRI等醫(yī)學圖像進行病灶檢測、器官分割和疾病分類B.深度學習技術(shù)在醫(yī)學圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標注困難和模型泛化能力不足的問題C.醫(yī)學圖像分析需要遵循嚴格的醫(yī)學標準和倫理規(guī)范,確保結(jié)果的準確性和可靠性D.醫(yī)學圖像分析完全依賴于計算機視覺技術(shù),醫(yī)生的經(jīng)驗和專業(yè)知識不再重要21、圖像分類是計算機視覺的基本任務之一。假設(shè)要對大量的動物圖像進行分類,將其分為貓、狗、兔子等類別。在進行圖像分類時,以下關(guān)于特征提取的描述,正確的是:()A.手工設(shè)計的特征,如顏色直方圖、紋理特征等,總是比自動學習的特征更有效B.深度學習中的卷積神經(jīng)網(wǎng)絡能夠自動學習到具有判別性的圖像特征,無需人工干預C.特征提取的好壞對圖像分類的結(jié)果影響不大,主要取決于分類器的性能D.為了提高分類準確率,應該盡可能多地提取圖像的各種特征,而不考慮特征的冗余性22、計算機視覺在無人駕駛中的應用需要對周圍環(huán)境進行快速準確的感知。假設(shè)車輛要在復雜的城市道路環(huán)境中行駛,以下哪種傳感器的數(shù)據(jù)融合可能對提高環(huán)境感知的可靠性至關(guān)重要?()A.攝像頭與激光雷達B.攝像頭與毫米波雷達C.激光雷達與超聲波傳感器D.以上都有可能23、在計算機視覺的圖像壓縮任務中,需要在減少數(shù)據(jù)量的同時盡量保持圖像的質(zhì)量。假設(shè)要對一組高清圖像進行壓縮,以節(jié)省存儲空間和傳輸帶寬,同時要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法24、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學習的方法C.基于深度學習的方法,如SRCNND.基于小波變換的方法25、在計算機視覺的圖像修復任務中,假設(shè)要填補圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復圖像的完整性和真實性?()A.基于擴散的修復方法B.基于深度學習的圖像修復模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進行修復,保留圖像的缺失部分26、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設(shè)要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關(guān)于模型訓練的挑戰(zhàn),哪一項是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓練B.模型的訓練時間過長,難以在短時間內(nèi)得到結(jié)果C.難以評估重建后的圖像質(zhì)量,沒有明確的標準D.計算資源需求過大,普通計算機難以承受27、假設(shè)要開發(fā)一個能夠自動識別水果種類和品質(zhì)的計算機視覺系統(tǒng),用于水果分揀和質(zhì)量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準確性和魯棒性,以下哪種圖像預處理技術(shù)可能是關(guān)鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割28、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設(shè)要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網(wǎng)絡D.基于隱馬爾可夫模型的動作識別29、在計算機視覺的圖像生成任務中,除了生成新的圖像,還可以對已有圖像進行風格轉(zhuǎn)換。假設(shè)我們要將一張照片轉(zhuǎn)換為油畫風格,以下哪種方法能夠?qū)崿F(xiàn)逼真的風格轉(zhuǎn)換效果?()A.基于圖像濾波和變換的方法B.基于深度學習的風格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法30、計算機視覺在工業(yè)檢測中的應用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機B.工業(yè)線陣相機C.手機攝像頭D.監(jiān)控攝像頭二、應用題(本大題共5個小題,共25分)1、(本題5分)開發(fā)一個能夠識別不同種類昆蟲幼蟲的計算機視覺系統(tǒng)。2、(本題5分)設(shè)計一個系統(tǒng),利用計算機視覺檢測商場電梯的運行安全。3、(本題5分)使用計算機視覺方法,檢測高鐵站候車室的座位使用情況。4、(本題5分)通過圖像分割技術(shù),將醫(yī)學圖像中的骨骼和軟組織進行分離。5、(本題5分)對音樂演奏會的視頻進行樂器音色分析和演奏技巧評估。三、簡答題(本大題共5個小題,共25分)1、(本題5分)解釋計算機視覺
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年陜西省榆林十中高考語文模擬試卷(一)
- 2025年《價值為綱》學習心得例文(6篇)
- 彩色噴墨打印材料項目融資計劃書
- 物流行業(yè)2025版租賃協(xié)議6篇
- 2025版宿舍樓宿管員職責聘用合同3篇
- 2025年度新型存款居間代理管理合同4篇
- 2025年度知識產(chǎn)權(quán)質(zhì)押貸款協(xié)議4篇
- 2025版托盤銷售與新能源車輛運輸服務合同范本3篇
- 2025年度個人與銀行個人貸款合作專項協(xié)議4篇
- 二零二五年度嬰幼兒奶粉品牌孵化與市場拓展合同
- 2024版塑料購銷合同范本買賣
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2024年安徽省中考數(shù)學試卷含答案
- 2025屆山東省德州市物理高三第一學期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級上學期語文期末復習習題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學英語六年級下冊全冊教案
- 汽車噴漆勞務外包合同范本
- 2024年重慶南開(融僑)中學中考三模英語試題含答案
- 16J914-1 公用建筑衛(wèi)生間
評論
0/150
提交評論