下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)鄭州汽車工程職業(yè)學(xué)院《大數(shù)據(jù)分析與內(nèi)存計(jì)算》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)的可解釋性對(duì)于決策支持很重要。假設(shè)要向管理層解釋一個(gè)預(yù)測(cè)銷售趨勢(shì)的模型結(jié)果,以下關(guān)于數(shù)據(jù)可解釋性方法的描述,正確的是:()A.使用復(fù)雜的數(shù)學(xué)公式和技術(shù)術(shù)語(yǔ),讓管理層難以理解B.不提供任何解釋,讓管理層自行判斷C.采用簡(jiǎn)單直觀的圖表、案例分析和通俗易懂的語(yǔ)言,解釋模型的輸入、輸出和決策依據(jù),幫助管理層做出明智的決策D.認(rèn)為數(shù)據(jù)可解釋性不重要,只要模型預(yù)測(cè)準(zhǔn)確就行2、在數(shù)據(jù)分析中,模型選擇和調(diào)優(yōu)是提高性能的關(guān)鍵步驟。假設(shè)要在多個(gè)分類模型中選擇最優(yōu)的模型,以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)交叉驗(yàn)證等技術(shù)來(lái)評(píng)估不同模型在不同參數(shù)下的性能B.網(wǎng)格搜索和隨機(jī)搜索是常用的參數(shù)調(diào)優(yōu)方法,可以找到較優(yōu)的參數(shù)組合C.模型的復(fù)雜度越高,性能就越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.結(jié)合業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),選擇適合的模型和調(diào)優(yōu)方法3、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要選擇合適的分類算法。假設(shè)要對(duì)一組醫(yī)學(xué)圖像進(jìn)行疾病分類,圖像特征復(fù)雜且類別不均衡。以下哪種分類算法在處理這種具有挑戰(zhàn)性的分類問(wèn)題時(shí)可能表現(xiàn)更好?()A.支持向量機(jī)B.隨機(jī)森林C.樸素貝葉斯D.K最近鄰算法4、假設(shè)要分析一個(gè)城市的交通流量數(shù)據(jù),以優(yōu)化交通信號(hào)燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時(shí)間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個(gè)分析角度可能是關(guān)鍵的?()A.時(shí)空分析B.基于車型的分類分析C.只關(guān)注高峰時(shí)段的分析D.隨機(jī)抽樣分析5、在數(shù)據(jù)分析中,數(shù)據(jù)安全的措施有很多,其中訪問(wèn)控制是一種重要的措施。以下關(guān)于訪問(wèn)控制的描述中,錯(cuò)誤的是?()A.訪問(wèn)控制可以限制用戶對(duì)數(shù)據(jù)的訪問(wèn)權(quán)限B.訪問(wèn)控制可以防止數(shù)據(jù)的泄露和篡改C.訪問(wèn)控制可以分為身份認(rèn)證和授權(quán)兩個(gè)環(huán)節(jié)D.訪問(wèn)控制只適用于企業(yè)內(nèi)部的數(shù)據(jù)管理,對(duì)于外部數(shù)據(jù)無(wú)法進(jìn)行控制6、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的標(biāo)準(zhǔn)化或歸一化處理常常是必要的。假設(shè)我們有一組特征數(shù)據(jù),取值范圍差異較大,以下哪種標(biāo)準(zhǔn)化方法可以將數(shù)據(jù)映射到特定的區(qū)間,例如[0,1]?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是7、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測(cè)未來(lái)一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型8、數(shù)據(jù)分析中的文本分析用于處理非結(jié)構(gòu)化的文本數(shù)據(jù)。假設(shè)要從大量的客戶評(píng)論中提取關(guān)鍵信息和情感傾向,以下關(guān)于文本分析方法的描述,正確的是:()A.僅使用簡(jiǎn)單的關(guān)鍵詞計(jì)數(shù),不考慮文本的語(yǔ)義和語(yǔ)境B.不進(jìn)行文本的預(yù)處理和清洗,直接應(yīng)用分析算法C.采用自然語(yǔ)言處理技術(shù),包括詞法分析、句法分析、情感分析等,對(duì)文本進(jìn)行預(yù)處理、特征提取和建模,以準(zhǔn)確理解和挖掘文本中的信息D.認(rèn)為文本分析結(jié)果一定準(zhǔn)確可靠,不需要人工驗(yàn)證和修正9、假設(shè)要為一家電商企業(yè)進(jìn)行銷售數(shù)據(jù)分析,以預(yù)測(cè)未來(lái)一段時(shí)間內(nèi)的銷售額。數(shù)據(jù)集涵蓋了不同產(chǎn)品類別、銷售地區(qū)、銷售時(shí)間等多個(gè)變量。在這種情況下,為了提高預(yù)測(cè)的準(zhǔn)確性,以下哪個(gè)步驟可能是至關(guān)重要的?()A.數(shù)據(jù)清洗和預(yù)處理B.選擇合適的預(yù)測(cè)模型C.對(duì)模型進(jìn)行超參數(shù)調(diào)優(yōu)D.以上都是10、在數(shù)據(jù)分析中,建立預(yù)測(cè)模型是常見的任務(wù)之一。假設(shè)我們要預(yù)測(cè)下個(gè)月的產(chǎn)品銷售量。以下關(guān)于預(yù)測(cè)模型的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.線性回歸模型假設(shè)自變量和因變量之間存在線性關(guān)系,適用于簡(jiǎn)單的預(yù)測(cè)問(wèn)題B.決策樹模型易于理解和解釋,但可能會(huì)出現(xiàn)過(guò)擬合的問(wèn)題C.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,性能通常優(yōu)于單個(gè)決策樹D.預(yù)測(cè)模型一旦建立,就不需要根據(jù)新的數(shù)據(jù)進(jìn)行更新和調(diào)整11、假設(shè)我們正在分析客戶的購(gòu)買行為數(shù)據(jù),想要了解客戶購(gòu)買某一產(chǎn)品的頻率分布。以下哪種統(tǒng)計(jì)量最適合描述這種數(shù)據(jù)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差12、在數(shù)據(jù)分析的特征工程中,假設(shè)要從原始數(shù)據(jù)中提取有意義的特征以提高模型的性能。原始數(shù)據(jù)包含大量的文本和數(shù)值信息。以下哪種特征提取方法可能更有助于提升模型的準(zhǔn)確性?()A.詞袋模型,將文本轉(zhuǎn)換為向量B.主成分分析,降低數(shù)據(jù)維度C.特征選擇,挑選重要的特征D.不進(jìn)行特征工程,直接使用原始數(shù)據(jù)13、在數(shù)據(jù)預(yù)處理階段,對(duì)于含有大量缺失值的數(shù)據(jù),以下哪種處理方法不一定合適?()A.直接刪除含有缺失值的記錄B.用均值、中位數(shù)或眾數(shù)來(lái)填充缺失值C.通過(guò)建立模型來(lái)預(yù)測(cè)缺失值D.對(duì)缺失值不做任何處理14、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架如Hadoop被廣泛應(yīng)用。假設(shè)要對(duì)數(shù)十億行的日志數(shù)據(jù)進(jìn)行分析,以下哪個(gè)Hadoop組件可能主要負(fù)責(zé)數(shù)據(jù)的存儲(chǔ)?()A.HDFSB.MapReduceC.YARND.Hive15、在進(jìn)行數(shù)據(jù)分析時(shí),需要選擇合適的評(píng)估指標(biāo)來(lái)衡量模型的性能。假設(shè)要評(píng)估一個(gè)分類模型的效果,以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率衡量了正類樣本被正確預(yù)測(cè)的比例,適用于關(guān)注正類樣本的情況C.F1值綜合了準(zhǔn)確率和召回率,是一個(gè)較為平衡的評(píng)估指標(biāo),但計(jì)算較為復(fù)雜D.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的特點(diǎn),與模型的類型和應(yīng)用場(chǎng)景無(wú)關(guān)16、在數(shù)據(jù)分析中,若要分析數(shù)據(jù)的偏態(tài)和峰態(tài),以下哪個(gè)統(tǒng)計(jì)量可以提供相關(guān)信息?()A.偏度系數(shù)B.峰度系數(shù)C.協(xié)方差D.相關(guān)系數(shù)17、在數(shù)據(jù)分析中,數(shù)據(jù)可視化不僅可以用于展示結(jié)果,還可以用于探索數(shù)據(jù)。假設(shè)要通過(guò)可視化探索兩個(gè)變量之間的關(guān)系,以下關(guān)于數(shù)據(jù)可視化探索的描述,哪一項(xiàng)是不正確的?()A.散點(diǎn)圖可以直觀地顯示兩個(gè)變量之間的線性或非線性關(guān)系B.熱力圖可以用于展示兩個(gè)變量在不同取值下的頻率或密度C.數(shù)據(jù)可視化探索只是輔助手段,不能替代統(tǒng)計(jì)分析和建模D.可以通過(guò)不斷調(diào)整可視化的參數(shù)和形式,發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和趨勢(shì)18、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)銷售額的分布情況。以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.柱狀圖適合比較不同類別之間的數(shù)量差異B.折線圖常用于展示數(shù)據(jù)隨時(shí)間的變化趨勢(shì)C.餅圖能夠清晰地顯示各部分?jǐn)?shù)據(jù)占總體的比例關(guān)系,但不適合數(shù)據(jù)類別過(guò)多的情況D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來(lái)更美觀,對(duì)數(shù)據(jù)分析的幫助不大19、某數(shù)據(jù)分析項(xiàng)目需要對(duì)大量文本數(shù)據(jù)進(jìn)行情感分析。以下哪種技術(shù)常用于文本情感分析?()A.決策樹B.樸素貝葉斯C.支持向量機(jī)D.詞袋模型20、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了得到準(zhǔn)確和可靠的分析結(jié)果,需要對(duì)數(shù)據(jù)進(jìn)行有效的清洗。以下哪種數(shù)據(jù)清洗方法在處理這種復(fù)雜的數(shù)據(jù)質(zhì)量問(wèn)題時(shí)最為有效?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則糾正錯(cuò)誤數(shù)據(jù)D.以上方法結(jié)合使用21、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)的可視化呈現(xiàn)方式會(huì)影響對(duì)數(shù)據(jù)的理解和解讀。假設(shè)我們要展示不同年齡段人群的收入分布情況。以下關(guān)于數(shù)據(jù)可視化呈現(xiàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用小提琴圖同時(shí)展示數(shù)據(jù)的分布和密度B.雷達(dá)圖適合比較多個(gè)變量在不同類別上的表現(xiàn)C.3D圖表能夠更生動(dòng)地展示數(shù)據(jù),應(yīng)盡量使用3D圖表D.選擇合適的數(shù)據(jù)可視化呈現(xiàn)方式要考慮數(shù)據(jù)的特點(diǎn)和分析目的22、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是23、在數(shù)據(jù)庫(kù)管理中,當(dāng)多個(gè)用戶同時(shí)對(duì)同一數(shù)據(jù)表進(jìn)行操作時(shí),為了保證數(shù)據(jù)的一致性,通常會(huì)采用哪種技術(shù)?()A.數(shù)據(jù)備份B.事務(wù)處理C.數(shù)據(jù)加密D.索引優(yōu)化24、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)對(duì)于描述數(shù)據(jù)特征非常重要。假設(shè)要分析一組學(xué)生的考試成績(jī)分布情況,包括成績(jī)的集中趨勢(shì)和離散程度。以下哪個(gè)統(tǒng)計(jì)指標(biāo)組合最能全面地描述數(shù)據(jù)的分布特征?()A.均值和標(biāo)準(zhǔn)差B.中位數(shù)和方差C.眾數(shù)和極差D.以上指標(biāo)都不夠全面25、在建立回歸模型時(shí),如果自變量的數(shù)量較多,為了篩選出對(duì)因變量有顯著影響的自變量,以下哪種方法經(jīng)常被使用?()A.逐步回歸B.嶺回歸C.套索回歸D.以上都是26、對(duì)于數(shù)據(jù)分析中的分類問(wèn)題,假設(shè)要預(yù)測(cè)一個(gè)郵件是否為垃圾郵件,基于郵件的內(nèi)容、發(fā)件人、主題等特征。以下哪種分類算法在處理這種文本分類任務(wù)時(shí)可能效果較好?()A.決策樹,通過(guò)一系列規(guī)則進(jìn)行分類B.支持向量機(jī),尋找最優(yōu)分類超平面C.樸素貝葉斯,基于概率進(jìn)行分類D.不進(jìn)行分類,將所有郵件視為正常郵件27、在數(shù)據(jù)分析中,相關(guān)性分析用于研究?jī)蓚€(gè)變量之間的關(guān)系。假設(shè)要分析身高和體重之間的相關(guān)性,以下關(guān)于相關(guān)性分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以使用皮爾遜相關(guān)系數(shù)來(lái)衡量線性相關(guān)性的強(qiáng)度和方向B.相關(guān)性強(qiáng)并不意味著存在因果關(guān)系,只是表明變量之間存在某種關(guān)聯(lián)C.即使相關(guān)系數(shù)為零,也不能完全排除變量之間存在非線性關(guān)系的可能D.相關(guān)性分析的結(jié)果不受數(shù)據(jù)范圍和樣本大小的影響28、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況至關(guān)重要。假設(shè)要在一組生產(chǎn)數(shù)據(jù)中檢測(cè)異常值,以下關(guān)于異常值檢測(cè)方法的描述,正確的是:()A.僅通過(guò)觀察數(shù)據(jù)的分布,主觀判斷異常值,不使用任何定量方法B.采用單一的異常值檢測(cè)算法,不考慮其局限性和數(shù)據(jù)特點(diǎn)C.綜合運(yùn)用多種異常值檢測(cè)方法,結(jié)合數(shù)據(jù)的領(lǐng)域知識(shí)和業(yè)務(wù)背景,對(duì)檢測(cè)結(jié)果進(jìn)行評(píng)估和解釋D.忽略異常值的存在,認(rèn)為它們對(duì)數(shù)據(jù)分析結(jié)果沒(méi)有影響29、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能夠更好地描述數(shù)據(jù)特征。假設(shè)我們有一組學(xué)生的考試成績(jī)數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.計(jì)算均值可以準(zhǔn)確反映學(xué)生成績(jī)的平均水平,不受極端值影響B(tài).中位數(shù)能夠避免極端值的干擾,更好地代表成績(jī)的一般水平C.眾數(shù)適用于描述成績(jī)的集中趨勢(shì),尤其當(dāng)數(shù)據(jù)分布均勻時(shí)D.方差越大,說(shuō)明學(xué)生成績(jī)?cè)椒€(wěn)定,教學(xué)質(zhì)量越高30、在數(shù)據(jù)分析中,需要對(duì)缺失值進(jìn)行處理,例如在一個(gè)包含客戶信息的數(shù)據(jù)集里,部分客戶的年齡數(shù)據(jù)缺失。以下哪種處理缺失值的方法可能是合適的?()A.直接刪除包含缺失值的記錄B.用平均值或中位數(shù)填充C.根據(jù)其他相關(guān)變量進(jìn)行推測(cè)填充D.以上都是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)電商直播的選品策略可以通過(guò)數(shù)據(jù)分析來(lái)優(yōu)化。請(qǐng)討論如何依據(jù)銷售數(shù)據(jù)、用戶需求和市場(chǎng)趨勢(shì)來(lái)選擇合適的商品進(jìn)行直播銷售,提高銷售轉(zhuǎn)化率和用戶滿意度。2、(本題5分)在醫(yī)療數(shù)據(jù)的隱私保護(hù)中,分析如何在進(jìn)行數(shù)據(jù)分析的同時(shí),采用加密技術(shù)、匿名化處理等方法確?;颊邤?shù)據(jù)的安全性和隱私性。3、(本題5分)在電信行業(yè),用戶通話記錄、網(wǎng)絡(luò)流量數(shù)據(jù)等大量存在。探討如何利用數(shù)據(jù)分析方法,比如客戶流失預(yù)測(cè)、網(wǎng)絡(luò)優(yōu)化等,提高電信服務(wù)質(zhì)量,增強(qiáng)用戶粘性,同時(shí)研究在數(shù)據(jù)隱私保護(hù)法規(guī)嚴(yán)格和技術(shù)更新?lián)Q代快方面所面臨的困難及解決途徑。4、(本題5分)在金融科技的創(chuàng)新應(yīng)用中,如何利用數(shù)據(jù)分析來(lái)評(píng)估新產(chǎn)品的市場(chǎng)潛力、用戶接受度和風(fēng)險(xiǎn)特征,例如數(shù)字支付、區(qū)塊鏈金融等領(lǐng)域,同時(shí)應(yīng)對(duì)新興技術(shù)帶來(lái)的數(shù)據(jù)分析挑戰(zhàn)。5、(本題5分)社交媒體廣告投放效果的評(píng)估對(duì)于企業(yè)營(yíng)銷至關(guān)重要。請(qǐng)論述如何利用數(shù)據(jù)分析來(lái)衡量社交媒體廣告的曝光量、點(diǎn)擊率、轉(zhuǎn)化率等指標(biāo),分析影響廣告效果的因素,并提出優(yōu)化廣告投放策略的建議。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。請(qǐng)?jiān)敿?xì)闡述數(shù)據(jù)清洗的主要任務(wù)和常用方法,并舉例說(shuō)明數(shù)據(jù)清洗在實(shí)際項(xiàng)目中的應(yīng)用。2、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的維度建模方法,包括星型模型、雪花模型等,說(shuō)明它們的特點(diǎn)和適用場(chǎng)景,并舉例說(shuō)明。3、(本題5分)描述數(shù)據(jù)可視化中的動(dòng)態(tài)可視化技術(shù),如動(dòng)畫、交互可視化等的特點(diǎn)和適用場(chǎng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年浙江人保財(cái)險(xiǎn)江山支公司招聘筆試參考題庫(kù)含答案解析
- 2025年江西中建五局江西分公司招聘筆試參考題庫(kù)含答案解析
- 2025年貴州銅仁市銀海商貿(mào)公司招聘筆試參考題庫(kù)含答案解析
- 2025年華能新能源股份有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年中國(guó)石油撫順石化分公司招聘筆試參考題庫(kù)含答案解析
- 奉節(jié)縣2025年度公開招聘事業(yè)單位工作人員歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 大慶市經(jīng)濟(jì)合作促進(jìn)局2025年人才引進(jìn)招聘歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 二零二五年度電子廢棄物處理設(shè)施ROHS合規(guī)評(píng)估及整改協(xié)議3篇
- 國(guó)家檔案局2025年事業(yè)單位招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 四川雅安市寶興縣2025年公招綜合類事業(yè)單位工作人員擬聘用人員公高頻重點(diǎn)提升(共500題)附帶答案詳解
- 開展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 中國(guó)骨關(guān)節(jié)炎診療指南(2024版)解讀
- 2025北京豐臺(tái)初二(上)期末數(shù)學(xué)真題試卷(含答案解析)
- 四川省2024年中考數(shù)學(xué)試卷十七套合卷【附答案】
- 2021年上海市初中學(xué)生化學(xué)競(jìng)賽(第二十八屆天原杯)復(fù)賽試題及答
- 歌曲作品委托演唱?jiǎng)?chuàng)作合同 模板
- CAMDS操作方法及使用技巧
- 淺談如何上好試卷講評(píng)課
- 股票買賣絕招之高開假陰線攻擊日選股公式
- 建筑施工企業(yè)安全生產(chǎn)管理制度
- 品牌授權(quán)書范本一
評(píng)論
0/150
提交評(píng)論