版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1整數(shù){零EQ\*jc3\*hps44\o\al(\s\up2147483638(〔),l)p1、有理數(shù):任何一個(gè)有理數(shù)總可以寫(xiě)成的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。q2、無(wú)理數(shù):初中遇到的無(wú)理數(shù)有三種:開(kāi)不盡的方根,如2、34;特定結(jié)構(gòu)的不限環(huán)無(wú)限小數(shù),如3、判斷一個(gè)實(shí)數(shù)的數(shù)性不能僅憑表面上的感覺(jué),往往要經(jīng)過(guò)整理化簡(jiǎn)后才下結(jié)論。二、實(shí)數(shù)中的幾個(gè)概念1、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。(1)實(shí)數(shù)a的相反數(shù)是-a2)a和b互為相反數(shù)今a+b=01(1)實(shí)數(shù)a(a≠0)的倒數(shù)是2)a和b互為倒數(shù)今ab=13)注意0沒(méi)有倒數(shù)a(1)一個(gè)數(shù)a的絕對(duì)值有以下三種情況:(2)實(shí)數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值,就是數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)(3)去掉絕對(duì)值符號(hào)(化簡(jiǎn))必須要對(duì)絕對(duì)值符號(hào)里面的實(shí)數(shù)進(jìn)行數(shù)性(正、負(fù))確認(rèn),再去掉絕對(duì)值2(4)一個(gè)正數(shù)有一個(gè)正的立方根;0的立方根是0;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根。三、實(shí)數(shù)與數(shù)軸1、數(shù)軸:規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線稱為數(shù)軸。原點(diǎn)、正方向、單位長(zhǎng)度是數(shù)軸的三要素。2、數(shù)軸上的點(diǎn)和實(shí)數(shù)的對(duì)應(yīng)關(guān)系:數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),而每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的唯一的點(diǎn)來(lái)表示。實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系。1、在數(shù)軸上表示兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。2、正數(shù)大于0;負(fù)數(shù)小于0;正數(shù)大于一切負(fù)數(shù);兩個(gè)負(fù)數(shù)絕對(duì)值大的反而小。五、實(shí)數(shù)的運(yùn)算(1)同號(hào)兩數(shù)相加,取原來(lái)的符號(hào),并把它們的絕對(duì)值相加;(2)異號(hào)兩數(shù)相加,取絕對(duì)值大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。可使用加法交換減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)。(1)兩數(shù)相乘,同號(hào)取正,異號(hào)取負(fù),并把絕對(duì)值相乘。(2)n個(gè)實(shí)數(shù)相乘,有一個(gè)因數(shù)為0,積就為0;若n個(gè)非0的實(shí)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;當(dāng)負(fù)因數(shù)為奇數(shù)個(gè)時(shí),積為負(fù)。(3)乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。(1)兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。(2)除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。5、乘方與開(kāi)方:乘方與開(kāi)方互為逆運(yùn)算。6、實(shí)數(shù)的運(yùn)算順序:乘方、開(kāi)方為三級(jí)運(yùn)算,乘、除為二級(jí)運(yùn)算,加、減是一級(jí)運(yùn)算,如果沒(méi)有括號(hào),在同一級(jí)運(yùn)算中要從左到右依次運(yùn)算,不同級(jí)的運(yùn)算,先算高級(jí)的運(yùn)算再算低級(jí)的運(yùn)算,有括號(hào)的先算括號(hào)里的運(yùn)算。無(wú)論何種運(yùn)算,都要注意先定符號(hào)后運(yùn)算。六、有效數(shù)字和科學(xué)記數(shù)法2、有效數(shù)字:一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù),到精確到的數(shù)位為止,所有的數(shù)字,叫做這個(gè)數(shù)的有效數(shù)字。精確度的形式有兩種1)精確到那一位2)保留幾個(gè)有效數(shù)字。例1、已知實(shí)數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)化簡(jiǎn):a-a+b-b-a3分析:3<-1;b=-所以容易得出:例4、已知a與b互為相反數(shù),c與d互為倒數(shù),m的絕對(duì)值是-cd+m2的值。1、代數(shù)式:用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫代數(shù)式。單獨(dú)一個(gè)數(shù)或者一個(gè)字母2、代數(shù)式的值:用數(shù)值代替代數(shù)里的字母,計(jì)算后得到的結(jié)果叫做代數(shù)式的值。整式{l分式代數(shù)式{有理式{l多項(xiàng)式l分式l無(wú)理式二、整式的有關(guān)概念及運(yùn)算(1)單項(xiàng)式:像x、7、2x2y,這種數(shù)與字母的積叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)叫做這個(gè)單項(xiàng)式的次數(shù)。單項(xiàng)式的系數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù)叫單項(xiàng)式的系數(shù)。4(2)多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式的項(xiàng):多項(xiàng)式中每一個(gè)單項(xiàng)式都叫多項(xiàng)式的項(xiàng)。一個(gè)多項(xiàng)式含有幾項(xiàng),就叫幾項(xiàng)式。多項(xiàng)式的次數(shù):多項(xiàng)式里,次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。不含字母的項(xiàng)叫常數(shù)項(xiàng)。升(降)冪排列:把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小(大)到大(?。┑捻樞蚺帕衅饋?lái),叫做把多項(xiàng)式按這個(gè)字母升(降)冪排列。(3)同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。合并同類項(xiàng):把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母及字母的指數(shù)不變。去括號(hào)法則:括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不變;括號(hào)前面是“–”號(hào),把括號(hào)和它前面的“–”號(hào)去掉,括號(hào)里的各項(xiàng)都變號(hào)。添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變;括號(hào)前面是“–”號(hào),括到括號(hào)里的各整式的加減實(shí)際上就是合并同類項(xiàng),在運(yùn)算時(shí),如果遇到括號(hào),先去括號(hào),再合并同類項(xiàng)。冪的運(yùn)算法則:其中m、n都是正整數(shù)同底數(shù)冪相乘:am.an=am+n;同底數(shù)冪相除:am÷an=am—n;冪的乘方:(am)n=amn積的乘方:(ab)n=anbn。單項(xiàng)式乘以單項(xiàng)式:用它們系數(shù)的積作為積的系數(shù),對(duì)于相同的字母,用它們的指數(shù)的和作為這個(gè)字母的指數(shù);對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個(gè)因式。單項(xiàng)式乘以多項(xiàng)式:就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。多項(xiàng)式乘以多項(xiàng)式:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。單項(xiàng)除單項(xiàng)式:把系數(shù),同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有字母,則連同它的指數(shù)作為商的一個(gè)因式。多項(xiàng)式除以單項(xiàng)式:把這個(gè)多項(xiàng)式的每一項(xiàng)除以這個(gè)單項(xiàng),再把所得的商相加。三、因式分解1、因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫因式分解。(4)分組分解法:將多項(xiàng)式的項(xiàng)適當(dāng)分組后能提公因式或運(yùn)用公式分解。5ax2(1)如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;(2)提出公因式或無(wú)公因式可提,再考慮可否運(yùn)用公式或十字相乘法;(3)對(duì)二次三項(xiàng)式,應(yīng)先嘗試用十字相乘法分解,不行的再用求根公式法。(4)最后考慮用分組分解法。AB(1)分式無(wú)意義:B=0時(shí),分式無(wú)意義;B≠0時(shí),分式有意義。(3)分式的約分:把一個(gè)分式的分子與分母的公因式約去叫做分式的約分。方法是把分子、分母因式分解,再約去公因式。(4)最簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式時(shí),叫做最簡(jiǎn)分式。分式運(yùn)算的最終結(jié)果若是分式,一定要化為最簡(jiǎn)分式。(5)通分:把幾個(gè)異分母的分式分別化成與原來(lái)分式相等的同分母分式的過(guò)程,叫做分式的通分。(6)最簡(jiǎn)公分母:各分式的分母所有因式的最高次冪的積。(7)有理式:整式和分式統(tǒng)稱有理式。(1)(M是≠0的整式)2)EQ\*jc3\*hps35\o\al(\s\up12(A),B)=(M是≠0的整式)(3)分式的變號(hào)法則:分式的分子,分母與分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。(1)加、減:同分母的分式相加減,分母不變,分子相加減;異分母的分式相加減,先把它們通分成同分母的分式再相加減。(2)乘:先對(duì)各分式的分子、分母因式分解,約分后再分子乘以分子,分母乘以分母。(3)除:除以一個(gè)分式等于乘上它的倒數(shù)式。(4)乘方:分式的乘方就是把分子、分母分別乘方。五、二次根式(1)最簡(jiǎn)二次根式:被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式,被開(kāi)方數(shù)中不含能開(kāi)得盡方的因式的二次根式叫最簡(jiǎn)二次根式。(2)同類二次根式:化為最簡(jiǎn)二次根式之后,被開(kāi)方數(shù)相同的二次根式,叫做同類二次根式。(3)分母有理化:把分母中的根號(hào)化去叫做分母有理化。(4)有理化因式:把兩個(gè)含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說(shuō)這6(1)二次根式的加減:將各二次根式化為最簡(jiǎn)二次根式后,合并同類二次根式。(3)二次根式的除法二次根式運(yùn)算的最終結(jié)果如果是根式,要化成最簡(jiǎn)二次根式。2(yx)分析:先提公因式,后用平方差公式解:略[規(guī)律總結(jié)]因式分解本著先提取,后公式等,但應(yīng)把第一個(gè)因式都分解到不能再分解為止,往往需要對(duì)分解后的每一個(gè)因式進(jìn)行最后的審查,如果還能分解,應(yīng)繼續(xù)分解。分析:可看成是x2和(x+y)的二次三項(xiàng)式,先用十字相乘法,初步分解。解:略[規(guī)律總結(jié)]應(yīng)用十字相乘法時(shí),注意某一項(xiàng)可是單項(xiàng)的一字母,也可是某個(gè)多項(xiàng)式或整式,有時(shí)還需要連續(xù)用十字相乘法。2x2分析:先分組,第一項(xiàng)和第二項(xiàng)一組,第三、第四項(xiàng)一組,后提取,再公式。解:略[規(guī)律總結(jié)]對(duì)多項(xiàng)式適當(dāng)分組轉(zhuǎn)化成基本方法因式分組,分組的目的是為了用提公因式,十字相乘法二、式的運(yùn)算巧用公式分析:運(yùn)用平方差公式因式分解,使分式運(yùn)算簡(jiǎn)單化。解:略[規(guī)律總結(jié)]抓住三個(gè)乘法公式的特征,靈活運(yùn)用,特別要掌握公式的幾種變形,公式的逆用,掌握運(yùn)用公式的技巧,使運(yùn)算簡(jiǎn)便準(zhǔn)確。[規(guī)律總結(jié)]一定要先化到最簡(jiǎn)再代入求值,注意去括號(hào)的法則。7分析:–a3可看成解:略[規(guī)律總結(jié)]分式計(jì)算過(guò)程中1)除法轉(zhuǎn)化為乘法時(shí),要倒轉(zhuǎn)分子、分母2)注意負(fù)號(hào)4、根式計(jì)算[規(guī)律總結(jié)]二次根式的性質(zhì)和運(yùn)算是中考必考內(nèi)容,特別是二次根式的化簡(jiǎn)、求值及性質(zhì)的運(yùn)用是中考的主要考查內(nèi)容。1、方程:含有未知數(shù)的等式叫做方程。2、方程的解:使方程左右兩邊的值相等的未知數(shù)的值叫方程的解,含有一個(gè)未知數(shù)的方程的解也叫3、解方程:求方程的解或方判斷方程無(wú)解的過(guò)程叫做解方程。4、方程的增根:在方程變形時(shí),產(chǎn)生的不適合原方程的根叫做原方程的增根。二、一元方程(3)解一元一次方程的一般步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)和系數(shù)化為1。(4)一元一次方程有唯一的一個(gè)解。2、一元二次方程(2)一元二次方程的解法:直接開(kāi)平方法、配方法、公式法、因式分解法(3)一元二次方程解法的選擇順序是:先特殊后一般,如沒(méi)有要求,一般不用配方法。當(dāng)Δ>0時(shí)今方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)Δ=0時(shí)今方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)Δ<0時(shí)今方程沒(méi)有實(shí)數(shù)根,無(wú)解;當(dāng)Δ≥0時(shí)今方程有兩個(gè)實(shí)數(shù)根aca三、分式方程(1)定義:分母中含有未知數(shù)的方程叫做分式方程。8一般解法:去分母法,方程兩邊都乘以最簡(jiǎn)公分母。特殊方法:換元法。(3)檢驗(yàn)方法:一般把求得的未知數(shù)的值代入最簡(jiǎn)公分母,使最簡(jiǎn)公分母不為0的就是原方程的根;使得最簡(jiǎn)公分母為0的就是原方程的增根,增根必須舍去,也可以把求得的未知數(shù)的值代入原方程檢驗(yàn)。1、方程組的解:方程組中各方程的公共解叫做方程組的解。2、解方程組:求方程組的解或判斷方程組無(wú)解的過(guò)程叫做解方程組解法:代入消遠(yuǎn)法和加減消元法解的個(gè)數(shù):有唯一的解,或無(wú)解,當(dāng)兩個(gè)方程相同時(shí)有無(wú)數(shù)的解。解法:代入消元法和加減消元法(1)定義:由一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組以及由兩個(gè)二元二次方程組成的方程組叫做二元二次方程組。(2)解法:消元,轉(zhuǎn)化為解一元二次方程,或者降次,轉(zhuǎn)化為二元一次方程組??键c(diǎn)與命題趨向分析一、一元二次方程的解法22分析1)用直接開(kāi)方法解2)用公式法3)用因式分解法解:略[規(guī)律總結(jié)]如果一元二次方程形如(x+m)2=n(n≥0),就可以用直接開(kāi)方法來(lái)解;利用公式法可以解任何一個(gè)有解的一元二次方程,運(yùn)用公式法解一元二次方程時(shí),一定要把方程化成一般形式。分析1)先化為一般形式,再用公式法解2)直接可以十字相乘法因式分解后可求解。[規(guī)律總結(jié)]對(duì)于帶字母系數(shù)的方程解法和一般的方程沒(méi)有什么區(qū)別,在用公式法時(shí)要注意判斷△的正負(fù)。(22)分析1)用去分母的方法2)用換元法解:略[規(guī)律總結(jié)]一般的分式方程用去分母法來(lái)解,一些具有特殊關(guān)系如:有平方關(guān)系,倒數(shù)關(guān)系等的分式方程,三、根的判別式及根與系數(shù)的關(guān)系9分析:由題意可得Δ=0,把各系數(shù)代入Δ=0中就可求出p,但要先化為一般形式。[規(guī)律總結(jié)]對(duì)于根的判別式的三種情況要很熟練,還有要特別留意二次項(xiàng)系數(shù)不能為0例5、已知a、b是方程x2-2x(1)a2+b22)-+-分析:先算出a+b和ab的值,再代入把(12)變形后的式子就可求出解。[規(guī)律總結(jié)]此類題目都是先算出兩根之和和兩根之積,再把要求的式子變形成含有兩根之和和兩根之積的形式,再代入計(jì)算。但要注意檢驗(yàn)一下方程是否有解。例6、求作一個(gè)一元二次方程,使它的兩個(gè)根分別比方程x2-x-5=0的兩個(gè)根小3分析:先出求原方程的兩根之和x1+x2和兩根之積x1x2再代入求出(x1-3)+(x2-2)和(x1-3)(x2-3)的值,所求的方程也就容易寫(xiě)出來(lái)。解:略[規(guī)律總結(jié)]此類題目可以先解出第一方程的兩個(gè)解,但有時(shí)這樣又太復(fù)雜,用根與系數(shù)的關(guān)系就比較簡(jiǎn)單。三、方程組分析1)用加減消元法消x較簡(jiǎn)單2)應(yīng)該先用加減消元法消去y,變成二元一次方程組,較易求解。解:略[規(guī)律總結(jié)]加減消元法是最常用的消元方法,消元時(shí)那個(gè)未知數(shù)的系數(shù)最簡(jiǎn)單就先消那個(gè)未知數(shù)。分析1)可用代入消遠(yuǎn)法,也可用根與系數(shù)的關(guān)系來(lái)求解2)要先把第一個(gè)方程因式分解化成兩個(gè)二元一次方程,再與第二個(gè)方程分別組成兩個(gè)方程組來(lái)解。解:略[規(guī)律總結(jié)]對(duì)于一個(gè)二元一次方程和一個(gè)二元二次方程組成的方程組一般用代入消元法,對(duì)于兩個(gè)二元二次方程組成的方程組,一定要先把其中一個(gè)方程因式分解化為兩個(gè)一次方程再和第二個(gè)方程組成兩個(gè)方程一、列方程(組)解應(yīng)用題的一般步驟二、列方程(組)解應(yīng)用題常見(jiàn)類型題及其等量關(guān)系;(1)基本工作量的關(guān)系:工作量=工作效率×工作時(shí)間(2)常見(jiàn)的等量關(guān)系:甲的工作量+乙的工作量=甲、乙合作的工作總量(1)基本量之間的關(guān)系:路程=速度×?xí)r間相遇問(wèn)題:甲走的路程+乙走的路程=全路程同時(shí)不同地:甲的時(shí)間=乙的時(shí)間;甲走的路程–乙走的路程=原來(lái)甲、乙相距路程同地不同時(shí):甲的時(shí)間=乙的時(shí)間–時(shí)間差;甲的路程=乙的路程逆流速度=船在靜水中的速度–水流速度常見(jiàn)等量關(guān)系:增長(zhǎng)后的量=原來(lái)的量+增長(zhǎng)的量;增長(zhǎng)的量=原來(lái)的量×(1+增基本量之間的關(guān)系:三位數(shù)=個(gè)位上的數(shù)+十位上的數(shù)×10+百位上的數(shù)×100三、列方程解應(yīng)用題的常用方法1、譯式法:就是將題目中的關(guān)鍵性語(yǔ)言或數(shù)量及各數(shù)量間的關(guān)系譯成代數(shù)式,然后根據(jù)代數(shù)之間的2、線示法:就是用同一直線上的線段表示應(yīng)用題中的數(shù)量關(guān)系,然后根據(jù)線段長(zhǎng)度的內(nèi)在聯(lián)系,找3、列表法:就是把已知條件和所求的未知量納入表格,從而找出各種量之間的關(guān)系。4、圖示法:就是利用圖表示題中的數(shù)量關(guān)系,它可以使量與量之間的關(guān)系更為直觀,這種方法能幫助我們更好地理解題意。例1、甲、乙兩組工人合作完成一項(xiàng)工程,合作5天后,甲組另有任務(wù),由乙組再單獨(dú)工作1天就可完成,若單獨(dú)完成這項(xiàng)工程乙組比甲組多用2天,求甲、乙兩組單獨(dú)完成這項(xiàng)工程各需幾天?分析:設(shè)工作總量為1,設(shè)甲組單獨(dú)完成工程需要x天,則乙組完成工程需要(x+2)天,等量關(guān)系是甲例2、某部隊(duì)奉命派甲連跑步前往90千米外的A地,1小時(shí)45分后,因任務(wù)需要,又增派乙連乘車(chē)1前往支援,已知乙連比甲連每小時(shí)快28千米,恰好在全程的處追上甲連。求乙連的行進(jìn)速度及追上甲3連的時(shí)間分析:設(shè)乙連的速度為v千米/小時(shí),追上甲連的時(shí)間為t小時(shí),則甲連的速度為(v–28)千米/小時(shí),這時(shí)乙連行了小時(shí),其等量關(guān)系為:甲走的路程=乙走的路程=30例3、某工廠原計(jì)劃在規(guī)定期限內(nèi)生產(chǎn)通訊設(shè)備60臺(tái)支援抗洪,由于改進(jìn)了操作技術(shù);每天生產(chǎn)的臺(tái)分析:設(shè)原計(jì)劃每天生產(chǎn)通訊設(shè)備x臺(tái),則改進(jìn)操作技術(shù)后每天生產(chǎn)x(1+0.5)臺(tái),等量關(guān)系為:原計(jì)劃所用時(shí)間–改進(jìn)技術(shù)后所用時(shí)間=2天解:略例4、某商廈今年一月份銷售額為60萬(wàn)元,二月份由于種種原因,經(jīng)營(yíng)不善,銷售額下降10%,以后經(jīng)加強(qiáng)管理,又使月銷售額上升,到四月份銷售額增加到96萬(wàn)元,求三、四月份平均每月增長(zhǎng)的百分率分析:設(shè)三、四月份平均每月增長(zhǎng)率為x%,二月份的銷售額為60(1–10%)萬(wàn)元,三月份的銷售額為二月份的(1+x)倍,四月份的銷售額又是三月份的(1+x)倍,所以四月份的銷售額為二月份的(1+x)2倍,等量關(guān)系為:四月份銷售額為=96萬(wàn)元。解:略例5、一年期定期儲(chǔ)蓄年利率為2.25%,所得利息要交納20%的利息期儲(chǔ)戶納稅后所得到利息的計(jì)算公式為:已知某儲(chǔ)戶存下一筆一年期定期儲(chǔ)蓄到期納稅后得到利息是450元,問(wèn)該儲(chǔ)戶存入了多少本金?分析:設(shè)存入x元本金,則一年期定期儲(chǔ)蓄到期納稅后利息為2.25%(1-20%)x元,方程容易得出。例6、某商場(chǎng)銷售一批名牌襯衫,平均每天售出20件,每件盈利40元,為了擴(kuò)大銷售,增加盈利,減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕档统杀敬胧?,?jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可分析:設(shè)每件襯衫應(yīng)該降價(jià)x元,則每件襯衫的利潤(rùn)為(40-x)元,平均每天的銷售量為(20+2x)總利潤(rùn)=每件的利潤(rùn)×售出商品的叫量,可列出方程解:略一、不等式與不等式的性質(zhì)1、不等式:表示不等關(guān)系的式子。(表示不等關(guān)系的常用符號(hào):≠,<,>)。(l)不等式的兩邊都加上(或減去)同一個(gè)數(shù),不等號(hào)方向不改變,如a>b,c為實(shí)數(shù)→a+c>b+c(2)不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)方向不變,如a>b,c>0→ac>bc。(3)不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變,如a>b,c<0→ac<bc.數(shù),零,負(fù)數(shù))再確定不等號(hào)方向是否改變,不能像應(yīng)用等式的性質(zhì)那樣隨便,以防出錯(cuò)。二、不等式(組)的解、解集、解不等式1、能使一個(gè)不等式(組)成立的未知數(shù)的一個(gè)值叫做這個(gè)不等式(組)的一個(gè)解。不等式的所有解的集合,叫做這個(gè)不等式的解集。不等式組中各個(gè)不等式的解集的公共部分叫做不等式組的解集。三、不等式(組)的類型及解法(l)概念:含有一個(gè)未知數(shù)并且含未知數(shù)的項(xiàng)的次數(shù)是一次的不等式,叫做一元一次不等式。(2)解法:與解一元一次方程類似,但要特別注意當(dāng)不等式的兩邊同乘(l)概念:含有相同未知數(shù)的幾個(gè)一元一次不等式所組成的不等式組,叫做一元一次不等式組。(2)解法:先求出各不等式的解集,再確定解集的公共部分。注:求不等式組的解集一般借助數(shù)軸求解較方便。(1)若a>b,c為實(shí)數(shù),則ac2>bc2;(2)若ac2>bc2,則a>b[規(guī)律總結(jié)]將不等式正確變形的關(guān)鍵是牢記不等式的三條基本性質(zhì),不等式的兩邊都乘以或除以含有字母的式子時(shí),要對(duì)字母進(jìn)行討論wqWSDFGHF()分析:使用直接解法解答常常費(fèi)時(shí)間,又因?yàn)榇鸢冈谝话闱闆r下成立,當(dāng)然特殊情況也成立,因此采ab[規(guī)律總結(jié)]此種方法常用于解選擇題,學(xué)生知識(shí)有限,不能直接解答時(shí)使用特殊值法,既快,又能找例3、解下列一元一次不等式,并把解集在數(shù)軸上表示出來(lái)。分析:解一元一次不等式的步驟與解一元一次方程類似,主要步驟有去分母,去括號(hào)、移項(xiàng)、合并同類項(xiàng),把系數(shù)化成1,需要注意的是,不等式的兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)要改變方向。解:略[規(guī)律總結(jié)]解一元一次不等式與解一元一次方程的步驟類似,但要注意當(dāng)不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向必須改變,類比法解題,使學(xué)生容易理解新知識(shí)和掌握新知識(shí)。方法4:數(shù)形結(jié)合法分析:要求一個(gè)不等式組的非負(fù)整數(shù)解,就應(yīng)先求出不等式組的解集,再?gòu)慕饧姓页銎渲械姆秦?fù)整數(shù)解。解:略方法5:逆向思考法分析:因?yàn)殛P(guān)于x的不等式的解集為x>3,與原不等式的不等號(hào)同向,所以有a–2>0,即原不等式的解集為解此方程求出a的值。解:略[規(guī)律總結(jié)]此題先解字母不等式,后著眼已知的解集,探求成立的條件,此種類型題都采用逆向思考一、平面直角坐標(biāo)系1、平面內(nèi)有公共原點(diǎn)且互相垂直的兩條數(shù)軸,構(gòu)成平面直角坐標(biāo)系。在平面直角坐標(biāo)系內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間建立了—一對(duì)應(yīng)的關(guān)系。點(diǎn)P(x,y)在第一象限今x>0,y點(diǎn)P(x,y)在第二象限今x<0,y>0;點(diǎn)P(x,y)在第三象限今x<0,y<0;點(diǎn)P(x,y)在第四象限今x>0,y<0。點(diǎn)P(x,y)在y軸上今x為0,y為任意實(shí)數(shù)。4.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特12二、函數(shù)的概念1、常量和變量:在某一變化過(guò)程中可以取不同數(shù)值的量叫做變量;保持?jǐn)?shù)值不變的量叫做常量。2、函數(shù):一般地,設(shè)在某一變化過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。①解析式是只含有一個(gè)自變量的整式的函數(shù),自變量取值范圍是全體實(shí)數(shù)。②解析式是只含有一個(gè)自變量的分式的函數(shù),自變量取值范圍是使分母不為0的實(shí)數(shù)。③解析式是只含有一個(gè)自變量的偶次根式的函數(shù),自變量取值范圍是使被開(kāi)方數(shù)非負(fù)的實(shí)數(shù)。注意:在確定函數(shù)中自變量的取值范圍時(shí),如果遇到實(shí)際問(wèn)題,還必須使實(shí)際問(wèn)題有意義。(2)函數(shù)值:給自變量在取值范圍內(nèi)的一個(gè)值所求得的函數(shù)的對(duì)應(yīng)值。(3)函數(shù)的表示方法:①解析法;②列表法;③圖像法(4)由函數(shù)的解析式作函數(shù)的圖像,一般步驟是:①列表;②描點(diǎn);③連線三、幾種特殊的函數(shù)(1)k>0直線向上的方向與x軸的正方向所形成的夾角為銳角;(2)k<0直線向上的方向與x軸的正方向所形成的夾角為鈍角;(1)a決定拋物線的開(kāi)口方向{c>0今圖像與y軸交點(diǎn)在x軸上方;c=0今圖像過(guò)原點(diǎn);c<0今圖像與y軸交點(diǎn)在x軸下方;4、正比例函數(shù)與反比例函數(shù)的對(duì)照表:例1、正比例函數(shù)圖象與反比例函數(shù)圖象都經(jīng)過(guò)點(diǎn)P(m,4已知點(diǎn)P到x軸的距離是到y(tǒng)軸的距離2倍.⑵求正比例函數(shù)、反比例函數(shù)的解析式。分析:由點(diǎn)P到x軸的距離是到y(tǒng)軸的距離2倍可知:2|m|=4,易求出點(diǎn)P的坐標(biāo),再利用待定系數(shù)法可求出這正、反比例函數(shù)的解析式。解:略例2、已知a,b是常數(shù),且y+b與x+a成正比例.求證:y是x的一次函數(shù).分析:應(yīng)寫(xiě)出y+b與x+a成正比例的表達(dá)式,然后判斷所得結(jié)果是否符合一次函數(shù)定義.證明:由已知,有y+b=k(x+a),其中k≠0.整理,得y=kx+(ka-b).①因?yàn)閗≠0且ka-b是常數(shù),故y=kx+(ka-b)是x的一次函數(shù)式.例3、填空:如果直線方程ax+by+c=0中,a<0,b<0且bc<0,則此直線經(jīng)過(guò)第象限.-EQ\*jc3\*hps35\o\al(\s\up13(c),b)>0.相當(dāng)于在一次函數(shù)y=kx+l中,此直線與y軸的交點(diǎn)(0EQ\*jc3\*hps35\o\al(\s\up13(c),b))在x軸上方.且此直線的向上方向與x軸正方向所成角是鈍角,所以此直線過(guò)第一、二、四象限.k例4、把反比例函數(shù)y=與二次函數(shù)y=kx2(k≠0)畫(huà)在同一個(gè)坐標(biāo)系里,正確的是().x答:選(D).這兩個(gè)函數(shù)式中的k的正、負(fù)號(hào)應(yīng)相同(圖13-110).例5、畫(huà)出二次函數(shù)y=x2-6x+7的圖象,根據(jù)圖象回答下列問(wèn)題:分析:要畫(huà)出這個(gè)二次函數(shù)的圖象,首先用配方法把y=x2-6x+7變形為y=(x-3)2-2,確定拋物線的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo),然后列表、描點(diǎn)、畫(huà)圖.解:圖象略.例6、拖拉機(jī)開(kāi)始工作時(shí),油箱有油45升,如果每小時(shí)耗油6升.(1)求油箱中的余油量Q(升)與工作時(shí)間t(時(shí))之間的函數(shù)關(guān)系式;答1)Q=45-6t.(2)圖象略.注意:這是實(shí)際問(wèn)題,圖象只能由自變量t的取值范圍0≤t≤7.5決定是一條線段,而不是直線.在統(tǒng)計(jì)時(shí),我們把所要考察的對(duì)象的全體叫做總體,其中每一考察對(duì)象叫做個(gè)體。從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本,樣本中個(gè)體的數(shù)目叫做樣本容量。二、反映數(shù)據(jù)集中趨勢(shì)的特征數(shù)1nff2EQ\*jc3\*hps35\o\al(\s\up13(1),n)kfk)2、中位數(shù):將一組數(shù)據(jù)接從小到大的順序排列,處在最中間位置上的數(shù)據(jù)叫做這組數(shù)據(jù)的中位數(shù),如果數(shù)據(jù)的個(gè)數(shù)為偶數(shù)中位數(shù)就是處在中間位置上兩個(gè)數(shù)據(jù)的平均數(shù)。3、眾數(shù):在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。一組數(shù)據(jù)的眾數(shù)可能不止一三、反映數(shù)據(jù)波動(dòng)大小的特征數(shù):n為較小的整數(shù)時(shí)用這個(gè)公式要?jiǎng)tS2=S`2。注:通常由方差求標(biāo)準(zhǔn)差。(1)分組:將一組數(shù)據(jù)按照統(tǒng)一的標(biāo)準(zhǔn)分成若干組稱為分組,當(dāng)數(shù)據(jù)在100個(gè)以內(nèi)時(shí),通常分成5-12組。(2)頻數(shù):每個(gè)小組內(nèi)的數(shù)據(jù)的個(gè)數(shù)叫做該組的頻數(shù)。各個(gè)小組的頻數(shù)之和等于數(shù)據(jù)總數(shù)n。(3)頻率:每個(gè)小組的頻數(shù)與數(shù)據(jù)總數(shù)n的比值叫做這一小組的頻率,各小組頻率之和為l。(4)頻率分布表:將一組數(shù)據(jù)的分組及各組相應(yīng)的頻數(shù)、頻率所列成的表格叫做頻率分布表。(5)頻率分布直方圖:將頻率分布表中的結(jié)果,繪制成的,以數(shù)據(jù)的各分點(diǎn)為橫坐標(biāo),以頻率除以組距為縱坐標(biāo)的直方圖,叫做頻率分布直方圖。圖中每個(gè)小長(zhǎng)方形的高等于該組的頻率除以組距。每個(gè)小長(zhǎng)方形的面積等于該組的頻率。所有小長(zhǎng)方形的面積之和等于各組頻率之和等于1。樣本的頻率分布反映樣本中各數(shù)據(jù)的個(gè)數(shù)分別占樣本容量n的比例的大小,總體分布反映總體中各組數(shù)據(jù)的個(gè)數(shù)分別在總體中所占比例的大小,一般是用樣本的頻率分布去估計(jì)總體的頻率分布。2、研究頻率分布的方法;得到一數(shù)據(jù)的頻率分布和方法,通常是先整理數(shù)據(jù),后畫(huà)出頻率分布直方(1)計(jì)算最大值與最小值的差2)決定組距與組數(shù)3)決定分點(diǎn)4)列領(lǐng)率分布表5)繪分析:先算出樣本的平均數(shù),以樣本平均數(shù)乘以20000,再乘以70%。解:略[規(guī)律總結(jié)]求平均數(shù)有三種方法,即當(dāng)所給數(shù)據(jù)比較分散時(shí),一般用平均數(shù)的概念來(lái)求;著所給數(shù)據(jù)較大且都在某一數(shù)a上下波動(dòng)時(shí),通常采用簡(jiǎn)化公式;若所給教據(jù)重復(fù)出現(xiàn)時(shí),通常采用加權(quán)平均數(shù)公例2、一次科技知識(shí)競(jìng)賽,兩次學(xué)生成績(jī)統(tǒng)計(jì)如下已經(jīng)算得兩個(gè)組的人均分都是80分,請(qǐng)根據(jù)你所學(xué)過(guò)的統(tǒng)計(jì)知識(shí)進(jìn)一步判斷這兩個(gè)組成績(jī)誰(shuí)優(yōu)誰(shuí)次,并說(shuō)明理由解l)甲組成績(jī)的眾數(shù)90分,乙組成績(jī)的眾數(shù)為70分,從眾數(shù)比較看,甲組成績(jī)好些。所以甲組成績(jī)較乙組波動(dòng)要小。(3)甲、乙兩組成績(jī)的中位數(shù)都是80分,甲組成績(jī)?cè)谥形粩?shù)以上的有33人,乙組成績(jī)?cè)谥形粩?shù)以上的有26人,從這一角度看甲組的成績(jī)總體要好。(4)從成績(jī)統(tǒng)計(jì)表看,甲組成績(jī)高于80分的人數(shù)為20人,乙組成績(jī)高于80分的人數(shù)為24人以,乙組成績(jī)集中在高分段的人數(shù)多,同時(shí),乙組得滿分的人數(shù)比甲組得滿分的人數(shù)多6人,從這一角度看,乙組的成績(jī)較好。[規(guī)律總結(jié)]明確方差或標(biāo)準(zhǔn)差是衡量一組數(shù)據(jù)的波動(dòng)的大小的,恰當(dāng)選用方差的三個(gè)計(jì)算公式,應(yīng)抓住三個(gè)公式的特征,根據(jù)題中數(shù)據(jù)的特點(diǎn)選用計(jì)算公式。1、計(jì)算頻率,并畫(huà)出頻率分布直方圖2、上指出身高在哪一組內(nèi)的男學(xué)生人數(shù)所占的比最大[規(guī)律總結(jié)]要掌握獲得一組數(shù)據(jù)的頻率分布的五大步驟,掌握整理數(shù)據(jù)的步驟和方法。會(huì)對(duì)數(shù)據(jù)進(jìn)行一、直線:直線是幾何中不加定義的基本概念,直線的兩大特征是“直”和“向兩方無(wú)限延伸”。二、直線的性質(zhì):經(jīng)過(guò)兩點(diǎn)有一條直線,并且只可簡(jiǎn)述為:過(guò)兩點(diǎn)有且只有一條直線,兩直線相交,只有一個(gè)交點(diǎn)。1、射線的定義:直線上一點(diǎn)和它們的一旁的部分叫做射線。1、線段的定義:直線上兩點(diǎn)和它之間的部分叫做線段,這兩點(diǎn)叫做線段的端點(diǎn)。1或∵AB=MAC2反之也成立12六、角1、角的兩種定義:一種是有公共端點(diǎn)的兩條射線所組成的圖形叫做角。要弄清定義中的兩個(gè)重點(diǎn)①角是由兩條射線組成的圖形;②這兩條射線必須有一個(gè)公共端點(diǎn)。另一種是一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形??梢钥闯鲈谄鹗嘉恢玫纳渚€與終止位置的射線就形成了一個(gè)角。2.角的平分線定義:一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。表示法有三種:如圖1—2(1)∠AOC=∠BOC1(3)∠AOC=∠COB=∠AOB2七、角的度量:度量角的大小,可用“度”作為度量單位。把一個(gè)圓周分成360等份,每一份叫做一(1)銳角:小于直角的角叫做銳角(2)直角:平角的一半叫做直角(3)鈍角:大于直角而小于平角的角(4)平角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終止位置和起始位置成一直線時(shí),所(5)周角:把一條射線,繞著它的端點(diǎn)順著一個(gè)方向旋轉(zhuǎn),當(dāng)終邊和始邊重合時(shí),所成的角叫做周1、對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這兩個(gè)角叫做對(duì)頂角。2、互為補(bǔ)角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補(bǔ)角。3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。4、鄰補(bǔ)角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(zhǎng)線的兩個(gè)角做互為鄰補(bǔ)角。注意:互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補(bǔ)角則要求兩個(gè)角有特殊十、角的性質(zhì)2、同角或等角的余角相等。3、同角或等角的補(bǔ)角相等。十一、相交線1、斜線:兩條直線相交不成直角時(shí),其中一條直線叫做另一條直線的斜線。它們的交點(diǎn)叫做斜足。2、兩條直線互相垂直:當(dāng)兩條直線相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),就說(shuō)這兩條直線互相3、垂線:當(dāng)兩條直線互相垂直時(shí),其中的一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。(l)過(guò)一點(diǎn)有且只有一條直線與己知直線垂直。(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短。簡(jiǎn)單說(shuō):垂線段最短。十二、距離1、兩點(diǎn)的距離:連結(jié)兩點(diǎn)的線段的長(zhǎng)度叫做兩點(diǎn)的距離。2、從直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫做點(diǎn)到直線的距離。3、兩條平行線的距離:兩條直線平行,從一條直線上的任意一點(diǎn)向另一條直線引垂線,垂線段的長(zhǎng)度,叫做兩條平行線的距離。說(shuō)明:點(diǎn)到直線的距離和平行線的距離實(shí)際上是兩個(gè)特殊點(diǎn)之間的距離,它們與點(diǎn)到直線的垂線段是十三、平行線1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。2、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。3、平行公理的推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。說(shuō)明:也可以說(shuō)兩條射線或兩條線段平行,這實(shí)際上是指它們所在的直線平行。(1)同位角相等,兩直線平行。(2)內(nèi)錯(cuò)角相等,兩直線平行。(3)同旁內(nèi)角互補(bǔ),兩直線平行。(1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯(cuò)角相等。(3)兩直線平行,同旁內(nèi)角互補(bǔ)。說(shuō)明:要證明兩條直線平行,用判定公理(或定理)在已知條件中有兩條直線平行時(shí),則應(yīng)用性質(zhì)定6、如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或互補(bǔ)。注意:當(dāng)角的兩邊平行且方向相同(或相反)時(shí),這兩個(gè)角相等。當(dāng)角的兩邊平行且一邊方向相同另一方向相反時(shí),這兩個(gè)角互補(bǔ)。方法1:利用特殊“點(diǎn)”和線段的長(zhǎng)[思路分析]由D是CB中點(diǎn),DB已知可求出CB,再由C點(diǎn)是AB中點(diǎn)可求出AB長(zhǎng),用AB減減去DB可求AD。解:略[規(guī)律總結(jié)]利用線段的特殊點(diǎn)如“中點(diǎn)”“比例點(diǎn)”求線段的長(zhǎng)的方法是較為簡(jiǎn)便的解法。方法2:如何辨別角的個(gè)數(shù)與線段條數(shù)。[思路分析]本問(wèn)題如不認(rèn)真審題會(huì)誤以為有4點(diǎn)恰有4個(gè)空就是4條線段即AB、BC、CD、ED;而如果從一個(gè)端點(diǎn)出發(fā)、再找出另一個(gè)端點(diǎn)確定線段,就會(huì)發(fā)現(xiàn)有10條再找出另一個(gè)端點(diǎn)確定線段。[思路分析]此題有些同學(xué)不認(rèn)真分析誤認(rèn)為就4個(gè)角,[規(guī)律總結(jié)]從一個(gè)頂點(diǎn)引出多條射線時(shí).為了確定角的個(gè)數(shù),一般按邊順序分類統(tǒng)計(jì),避免既不重復(fù)方法3:用代數(shù)法求角度1例4、已知一個(gè)銳角的余角,是這個(gè)銳角的補(bǔ)角的,求這個(gè)角。6[思路分析]本題涉及到的角是銳角同它的余角及補(bǔ)角。根據(jù)互為余角,互為補(bǔ)角的概念,考慮它們?cè)诼訹規(guī)律總結(jié)]有關(guān)余角、補(bǔ)角的問(wèn)題,一般都用代數(shù)方法先設(shè)未知數(shù),再依題意列出方程,求出結(jié)果。方法4:添加輔助線平移角例5、已知:如圖l—6,AB∥ED求證:∠B+∠BCD+∠D=360°[思路分析]我們知道只有周角是等于360°,而圖中又出現(xiàn)了關(guān)的以C為頂點(diǎn)的周角,若能把∠B、∠D移到與∠BCD相鄰點(diǎn)的位置,即可把∠B、∠BCD和∠D三個(gè)角組成一分周角,則可推出結(jié)論。證時(shí):略規(guī)律總結(jié)]此題雖是三種證法但思想是一樣的,都是通過(guò)加角達(dá)到目的,這種處理方法在幾何中常常用到。一、關(guān)于三角形的一些概念由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫三角形的邊;相鄰兩邊的公共端點(diǎn)叫三角形的頂點(diǎn);相鄰兩邊所組成的角叫三角形的內(nèi)角,簡(jiǎn)稱三角形的角。三角形的角平分線是一條線段(頂點(diǎn)與內(nèi)角平分線和對(duì)邊交線間的距離)2、三角形的中線三角形的中線也是一條線段(頂點(diǎn)到對(duì)邊中點(diǎn)間的距離)三角形的高線也是一條線段(頂點(diǎn)到對(duì)邊的距離)注意:三角形的中線和角平分線都在三角形內(nèi)。如圖2-l,AD、BE、CF都是么ABC的角平分線,它們都在△ABC內(nèi)如圖2-2,AD、BE、CF都是△ABC的中線,它們都在△ABC內(nèi)三、三角形三條邊的關(guān)系三角形三邊都不相等,叫不等邊三角形;有兩條邊相等的叫等腰三角形;三邊都相等的則叫等邊三角等腰三角形中,相等的兩條邊叫腰,另一邊叫底邊,腰和底邊的夾角叫底角,兩腰的夾角叫項(xiàng)角。三角形三角形{〔底邊和腰不相等的等腰三角形等腰三角形{l三角形三角形{〔底邊和腰不相等的等腰三角形等腰三角形{ll等邊三角形用集合表示,見(jiàn)圖2-4推論三角形兩邊的差小于第三邊。不符合定理的三條線段,不能組成三角形的三邊。例如三條線段長(zhǎng)分別為5,6,1人因?yàn)?+6<12,所以這三條線段,不能作為三角形的三邊。三、三角形的內(nèi)角和由定理可知,三角形的二個(gè)角已知,那么第三角可以由定理求得。如已知△ABC的兩個(gè)角為∠A=90°,∠B=40°,則∠C=180°–90°–40°=50°由定理可以知道,三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角。lll鈍角三角形用集合表示,見(jiàn)圖三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角。推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角?!?>∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。四、全等三角形能夠完全重合的兩個(gè)圖形叫全等形。兩個(gè)全等三角形重合時(shí),互相重合的頂點(diǎn)叫對(duì)應(yīng)頂點(diǎn),互相重合的邊叫對(duì)應(yīng)邊,互相重合的角叫對(duì)應(yīng)角。全等用符號(hào)“≌”表示△ABC≌△A`B`C`表示A和A`,B和B`,C和C`是對(duì)應(yīng)點(diǎn)。全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等。如圖2—7,△ABC≌△A`B`C`,則有A、B、C的對(duì)應(yīng)點(diǎn)A`、B`、C`;AB、BC、CA的對(duì)應(yīng)邊是A`B`、B`C`、C`A`?!螦,∠B,∠C的對(duì)應(yīng)角是∠A`、∠B`、∠C`?!郃B=A`B`,BC=B`C`,CA=C`A`;∠A=∠A`,∠B=∠B`,∠C=∠C`五、全等三角形的判定1、邊角邊公理:有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“邊角邊”或“SAS”)注意:一定要是兩邊夾角,而不能是邊邊角。2、角邊角公理:有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“角邊角“或“ASA”)3、推論有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“角角邊’域“AAS”)4、邊邊邊公理有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫(xiě)成“邊邊邊”或“SSS”)由邊邊邊公理可知,三角形的重要性質(zhì):三角形的穩(wěn)定性。除了上面的判定定理外,“邊邊角”或“角角角”都不能保證兩個(gè)三角形全等。5、直角三角形全等的判定:斜邊、直角邊公理有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(可以簡(jiǎn)寫(xiě)成“斜邊,直角邊”或“HL”)六、角的平分線定理1、在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。定理2、一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上。由定理1、2可知:角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合。可以證明三角形內(nèi)存在一個(gè)點(diǎn),它到三角形的三邊的距離相等這個(gè)點(diǎn)就是三角形的三條角平分線的交點(diǎn)(交于一點(diǎn))在兩個(gè)命題中,如果第一個(gè)命題的題設(shè)是第二個(gè)命題的結(jié)論,而第一個(gè)命題的結(jié)論又是第二個(gè)命題的題設(shè),那么這兩個(gè)命題叫做互為逆命題,如果把其中的一個(gè)做原命題,那么另一個(gè)叫它的逆命題。如果一個(gè)定理的逆命題經(jīng)過(guò)證明是真命題,那么它也是一個(gè)定理,這兩個(gè)定理叫互逆定理,其中一個(gè)叫另一個(gè)的逆定例如:“兩直線平行,同位角相等”和“同位角相等,兩直線平行”是互逆定理。一個(gè)定理不一定有逆定理,例如定理:“對(duì)頂角相等”就沒(méi)逆定理,因?yàn)椤跋嗟鹊慕鞘菍?duì)頂角”這是一個(gè)七、基本作圖限定用直尺和圓規(guī)來(lái)畫(huà)圖,稱為尺規(guī)作網(wǎng)_最基本、最常用的尺規(guī)作圖.通常稱為基本作圖,例如做一條線段等于己知線段。1、作一個(gè)角等于已知角:作法是使三角形全等(SSS),從而得到對(duì)應(yīng)角相等;2、平分已知角:作法仍是使三角形全等(SSS).從而得到對(duì)應(yīng)角相等。3、經(jīng)過(guò)一點(diǎn)作已知直線的垂線:(1)若點(diǎn)在已知直線上,可看作是平分已知角平角;(2)若點(diǎn)在已知直線外,可用類似平分已知角的方法去做:已知點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑作弧交已知真線于A、B兩點(diǎn),再以A、B為圓心,用相同的長(zhǎng)為半徑分別作弧交于D點(diǎn),連結(jié)CD即為所求垂線。線段的垂直平分線也叫中垂線。做法的實(shí)質(zhì)仍是全等三角形(SSS)。也可以用這個(gè)方法作線段的中點(diǎn)。八、作圖題舉例重要解決求作三角形的問(wèn)題1、已知兩邊一夾角,求作三角形2、已知底邊上的高,求作等腰三角形九、等腰三角形的性質(zhì)定理等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊,就是說(shuō):等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。推論2:等邊三角形的各角都相等,并且每一個(gè)角都等于60°例如:等腰三角形底邊中線上的任一點(diǎn)到兩腰的距離相等,因?yàn)榈妊切蔚走呏芯€就是頂角的角平分線、而角平分線上的點(diǎn)到角的兩邊距離相等n十、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相,那這兩個(gè)角所對(duì)的兩條邊也相等。(簡(jiǎn)寫(xiě)成“等角對(duì)等動(dòng)”)。推論1:三個(gè)角都相等的三角形是等邊三角形推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形推論3:在直角三角形中,如果一個(gè)銳角等于3O°,那么它所對(duì)的直角邊等于斜邊的一半。十一、線段的垂直平分線定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。就是說(shuō):線段的垂直平分線可以看作是和線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。十二、軸對(duì)稱和軸對(duì)稱圖形把一個(gè)圖形沿著某一條直線折疊二如果能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線軸對(duì)稱,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫關(guān)于這條直線的對(duì)稱點(diǎn),這條直線叫對(duì)稱軸。兩個(gè)圖形關(guān)于直線對(duì)稱也叫軸對(duì)稱。定理1:關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形。定理2:如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線。定理3:兩個(gè)圖形關(guān)于某條直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)相交。那么交點(diǎn)在對(duì)稱軸上。逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。如果一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這例如:等腰三角形頂角的分角線就具有上面所述的特點(diǎn),所以等腰三角形頂角的分角線是等腰三角形的一條對(duì)稱軸,而等腰三角形是軸對(duì)稱圖形。十三、勾股定理勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方:a2+b2=c勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2那么這個(gè)三角形是直角三角形例1、已知:AB、CD相交于點(diǎn)O,AC∥DB,OC=OD,E、F為AB上兩點(diǎn),且AE=BF.求證:CE=DF分析:要證CE=DF,可證△ACE≌△BDF,但由已知條件直接證不出全等,這時(shí)由已知條件可先證出△AOC≌△BOD,得出AC=BD,從而證出△ACE≌△BDF.證明:略求證:BF=DE分析:觀察圖形,BF和DE分別在△CFB和△AED(或△ABF和△CDE)中,由已知條件不能直接證明這兩個(gè)三角形全等。這時(shí)可由已知條件先證明△ABC≌△CDA,由此得∠1=∠2,從而證出△CFB≌△AED。證明:略例3、已知:∠CAE是三角形ABC的外角,∠1=∠2,AD∥BC。求證:AB=AC證明:略于=∠證明例4、已知:如圖3-89,OE平分∠AOB,EC⊥OA于C,ED⊥OBD.求證1)OC=OD2)OE垂直平分于=∠證明分析:證明第(1)題時(shí),利用“等角的余角相等”可得到∠OEC兩個(gè)三角形全等.證明:略一、多邊形1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。3、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。4、多邊形的對(duì)角線:連結(jié)多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。5、多邊形的周長(zhǎng):多邊形各邊的長(zhǎng)度和叫做多邊形的周長(zhǎng)。6、凸多邊形:把多邊形的任何一條邊向兩方延長(zhǎng),如果多邊形的其他各邊都在延長(zhǎng)線所得直線的問(wèn)旁,這樣的多邊形叫凸多邊形。說(shuō)明:一個(gè)多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說(shuō)的多邊形,如果不特別聲明,都是指凸多邊形。7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡(jiǎn)稱多邊形的角。8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做多邊形的外角。注意:多邊形的外角也就是與它有公共頂點(diǎn)的內(nèi)角的鄰補(bǔ)角。2說(shuō)明:利用上述公式,可以由一個(gè)多邊形的邊數(shù)計(jì)算出它的對(duì)角線的條數(shù),也可以由一個(gè)多邊形的對(duì)角線的條數(shù)求出它的邊數(shù)。11、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。說(shuō)明:多邊形的外角和是一個(gè)常數(shù)(與邊數(shù)無(wú)關(guān)),利用它解決有關(guān)計(jì)算題比利用多邊形內(nèi)角和公式及對(duì)角線求法公式簡(jiǎn)單。無(wú)論用哪個(gè)公式解決有關(guān)計(jì)算,都要與解方程聯(lián)系起二、平行四邊形1、平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。3、平行四邊形性質(zhì)定理2:平行四邊形的對(duì)邊相等。4、平行四邊形性質(zhì)定理2推論:夾在平行線間的平行線段相等。5、平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分。6、平行四邊形判定定理1:一組對(duì)邊平行且相等的四邊形是平行四邊形。7、平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形。8、平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形。9、平行四邊形判定定理4:兩組對(duì)角分別相等的四邊形是平行四邊形。說(shuō)明1)平行四邊形的定義、性質(zhì)和判定是研究特殊平行四邊形的基礎(chǔ)。同時(shí)又是證明線段相等,角相等或兩條直線互相平行的重要方法。(2)平行四邊形的定義即是平行四邊形的一個(gè)性質(zhì),又是平行四邊形的一個(gè)判定方法。三、矩形角位置也都隨之變化。因此矩形的性質(zhì)是在平行四邊形的基礎(chǔ)上擴(kuò)充的。1、矩形:有一個(gè)角是直角的平行四邊形叫做短形(通常也叫做長(zhǎng)方形)說(shuō)明:因?yàn)樗倪呅蔚膬?nèi)角和等于360度,已知有三個(gè)角都是直角,那么第四個(gè)角必定是直角。5、矩形判定定理2:對(duì)角線相等的平行四邊形是矩形。說(shuō)明:要判定四邊形是矩形的方法是:法一:先證明出是平行四邊形,再證出有一個(gè)直角(這是用定義證明)法二:先證明出是平行四邊形,再證出對(duì)角線相等(這是判定定理1)菱形也是特殊的平行四邊形,當(dāng)平行四邊形的兩個(gè)鄰邊發(fā)生變化時(shí),即當(dāng)兩個(gè)鄰邊相等時(shí),平行四邊1、菱形:有一組鄰邊相等的平行四邊形叫做菱形。3、菱形的性質(zhì)2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。5、菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形。說(shuō)明:要判定四邊形是菱形的方法是:(五)正方形正方形是特殊的平行四邊形,當(dāng)鄰邊和內(nèi)角同時(shí)運(yùn)動(dòng)時(shí),又能使平行四邊形的一個(gè)內(nèi)角為直角且鄰邊相等,這樣就形成了正方形。1、正方形:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。2、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等。3、正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角。4、正方形判定定理互:兩條對(duì)角線互相垂直的矩形是正方形。5、正方形判定定理2:兩條對(duì)角線相等的菱形是正方形。注意:要判定四邊形是正方形的方法有方法一:第一步證出有一組鄰邊相等;第二步證出有一個(gè)角是直角;第三步證出是平行四邊形。(這是用定義證明)六、梯形1、梯形:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形。2、梯形的底:梯形中平行的兩邊叫做梯形的底(通常把較短的底叫做上底,較長(zhǎng)的邊叫做下底)3、梯形的腰:梯形中不平行的兩邊叫做梯形的腰。4、梯形的高:梯形有兩底的距離叫做梯形的高。5、直角梯形:一腰垂直于底的梯形叫做直角梯形。6、等腰梯形:兩腰相等的梯形叫做等腰梯形。7、等腰梯形性質(zhì)定理1:等腰梯形在同一底上的兩個(gè)角相等。8、等腰梯形性質(zhì)定理2:等腰梯形的兩條對(duì)角線相等。9、等腰梯形的判定定理l。:在同一個(gè)底上鉤兩個(gè)角相10、等腰梯形的判定定理2:對(duì)角線相等的梯形是等腰梯形。研究等腰梯形常用的方法有:化為一個(gè)等腰三角形和一個(gè)平行四邊形;或兩個(gè)全等的直角三角形和一矩形;或作對(duì)角線的平行線交下底的延長(zhǎng)線于一點(diǎn);或延長(zhǎng)兩腰交于一點(diǎn)。七、中位線1、三角形的中位線連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線。說(shuō)明:三角形的中位線與三角形的中線不同。2、梯形的中位線:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形中位線。3、三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半。4、梯形中位線定理:梯形中位線平行于兩底,并且等于兩底和的一半。八、多邊形的面積說(shuō)明:多邊形的面積常用的求法有:(1)將任意一個(gè)平面圖形劃分為若干部分再通過(guò)求部分的面積的和,求出原來(lái)圖形的面積這種方法叫做分割法。如圖3-l,作六邊形的最長(zhǎng)的一條對(duì)角線,從其它各頂點(diǎn)向這條對(duì)角線引垂線,把六邊形分成四個(gè)直角三角形和兩個(gè)直角梯形,計(jì)算它們的面積再相加。(2)將一個(gè)平面圖形的某一部分割下來(lái)移放在另一個(gè)適當(dāng)?shù)奈恢蒙?,從而改變?cè)瓉?lái)圖形的形狀。利用計(jì)算變形后的圖形的面積來(lái)求原圖形的面積的這種方法。叫做割補(bǔ)法?!?)將一個(gè)平面圖形通過(guò)拼補(bǔ)某一圖形,使它變?yōu)榱硪粋€(gè)圖形,利用新的圖形減去所補(bǔ)充圖形的面積,來(lái)求出原來(lái)圖形面積的這種方法叫做拼湊法。注意:兩個(gè)圖形全等,它們的面積相等。等底等高的三角面積相等。一個(gè)圖形的面積等于它的各部分例2、一個(gè)多邊形的每一個(gè)外角都等于45°,那么這個(gè)多邊形的內(nèi)角和是多少度。分析:用多邊形外角和公式就可以求解。求證:四邊形AECF是矩形。例5、如圖48-3,已知在梯形ABCD中,AB∥CD,M、N分別為CD、AB的中點(diǎn)求證:梯形ABCD是等腰梯形。例6、已知:如圖49-2,梯形ABCD中,AB⊥BC,DE=EC。求證:AE=EB。一、比例線段1、比:選用同一長(zhǎng)度單位量得兩條線段。a、b的長(zhǎng)度分別是m、n,那么就說(shuō)這兩條線段的比是a:am2、比的前項(xiàng),比的后項(xiàng):兩條線段的比a:b中。說(shuō)明:求兩條線段的比時(shí),對(duì)這兩條線段要用同一單位長(zhǎng)度。3、比例:兩個(gè)比相等的式子叫做比例,如7、比例中項(xiàng):如果比例中兩個(gè)比例內(nèi)項(xiàng)相等,即比例為(或a:b=b:c時(shí),我們把b叫做a和d8、比例線段:在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么,這四條線段叫做成比例線段,簡(jiǎn)稱比例線段。兩個(gè)論是比積相等的式子叫做等積式。比例的基本性質(zhì)及推例式與等積式互化的理論依據(jù)。說(shuō)明:應(yīng)用等比性質(zhì)解題時(shí)常采用設(shè)已知條件為k,這種方法思路單一,方法簡(jiǎn)單不易出錯(cuò)。13、黃金分割把一條線段分成兩條線段,使較長(zhǎng)的線段是原線段與較小的線段的比例中項(xiàng),叫做把這說(shuō)明:把一條線段黃金分割的點(diǎn),叫做這條線段的黃金分割點(diǎn),在線段AB上截取這條線段的2二、平行線分線段成比例1、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其它直線上截得的說(shuō)明:由此定理可知推論1和推論2推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線必平分另一腰。格式:如果梯形ABCD,AD∥BC,AE=EB,推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。2、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。說(shuō)明:平行線等分線段定理是平行線分線段成比問(wèn)定理的特殊情況。3.平行線分線段成比例定理的推論:平行于三角形一邊的直線截其它兩邊,所得的對(duì)應(yīng)線段成比例。說(shuō)明1:平行線分線段成比例定理可用形象的語(yǔ)言來(lái)表達(dá)。如圖4—4說(shuō)明2:圖4-4的三種圖形中這些成比例線段的位置關(guān)系依然4、三角形一邊的平行線的判定定理。如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。5、三角形一邊的平行線的判定定理:平行于三角形的一邊,并且和其它兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例。6、線段的內(nèi)分點(diǎn):在一條線段上的一個(gè)點(diǎn),將線段分成兩條線段,這個(gè)點(diǎn)叫做這條線段的內(nèi)分點(diǎn)。7、線段的外分點(diǎn):在一條線段的延長(zhǎng)線上的點(diǎn),有時(shí)也叫做這條線段的外分點(diǎn)。說(shuō)明:外分點(diǎn)分線段所得的兩條線段,也就是這個(gè)點(diǎn)分別和線段的兩個(gè)端點(diǎn)確定的線段。三、相似三角形1、相似三角形:兩個(gè)對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。說(shuō)明:證兩個(gè)三角形相似時(shí)和證兩個(gè)三角形全等一樣,通常把表示這樣便于找出相似三角形的對(duì)應(yīng)角和對(duì)應(yīng)邊。2、相似比:相似三角形對(duì)應(yīng)邊的比k,叫做相似比(或叫做相似系數(shù))。3、相似三角形的基本定理:平分于三角形一邊的直線和其它兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成說(shuō)明:這個(gè)定理反映了相似三角形的存在性,所以有的書(shū)把它叫做相似三角形的存在定理,它是證明三角形相似的判定定理的理論基礎(chǔ)。(1)判定定理1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么就兩個(gè)三角形相似??珊?jiǎn)單說(shuō)成:兩角對(duì)應(yīng)相等,兩三角形相似。(2)判定定理2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)單說(shuō)成:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。(3)判定定理3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)單說(shuō)成:三邊對(duì)應(yīng)成比例,兩三角形相似。(4)直角三角形相似的判定定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。說(shuō)明:以上四個(gè)判定定理不難證明,以下判定三角形相似的命題是正確的,在解題時(shí),也可以用它們來(lái)判定兩個(gè)三角形的相似。第一:頂角(或底角)相等的兩個(gè)等腰三角形相似。第二:腰和底對(duì)應(yīng)成比例的兩個(gè)等腰三角形相似。第三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。第四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似。第五:如果一個(gè)三角形的兩邊和其中一邊上的中線與另一個(gè)三角形的兩邊和其中一邊上的中線對(duì)應(yīng)成比例,那么這兩個(gè)三角形.相似。(1)相似三角形性質(zhì)1:相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比、對(duì)應(yīng)角平分線的比都等于相似比。(2)相似三角形性質(zhì)2:相似三角形周長(zhǎng)的比等于相似比。說(shuō)明:以上兩個(gè)性質(zhì)簡(jiǎn)單記為:相似三角形對(duì)應(yīng)線段的比等于相似比。(3)相似三角形面積的比等于相似比的平方。說(shuō)明:兩個(gè)三角形相似,根據(jù)定義可知它們具有對(duì)應(yīng)角相等、對(duì)應(yīng)邊成比例這個(gè)性質(zhì)。6、介紹有特點(diǎn)的兩個(gè)三角形(1)共邊三角形指有一條公共邊的兩個(gè)三角形叫做共邊三角形。(2)共角三角形有一個(gè)角相等或互補(bǔ)的兩個(gè)三角形叫做共角三角形,如圖4-6(3)公邊共角有一個(gè)公共角,而且還有一條公共邊的兩個(gè)三角形叫做公邊共角三角形。說(shuō)明:具有公邊共角的兩個(gè)三角形相似,則公邊的平方等于疊在一條直線上的兩邊的乘積:如圖4—7例1、已知:求的值.分析:已知等比條件時(shí)常有以下幾種求值方法:(3)方程的思想,用其中一個(gè)字母表示其他字母.解:由2354,得a:b=2:3,b:c=5:4,即a:b:c=10:15:12.設(shè)a=10k,b=15k,c=12k,則(a+b):(b-c)=25:3.例2已知:如圖5-126(a),在梯形ABCD中,AD∥BC,對(duì)角線交于O點(diǎn),過(guò)O作EF∥BC,分別交AB,DC于E,F(xiàn).求證:OE=OF;為梯形中位線,求證AF∥MC.(1)利用比例證明兩線段相等的方法.②若da,則a=b(只適用于線段,對(duì)實(shí)數(shù)不成立);aca'c'③若dd,d'd',a=a′,b=b′,c=c′,則(2)利用平行線證明比例式及換中間比的方法.(3)證明ADBCEF時(shí),可將其轉(zhuǎn)化為“abc”類型后:①化為ab直接求出各比值,或可用中間比求出各比值再相加,證明比值的和為1;②直接通分或移項(xiàng)轉(zhuǎn)化為證明四條線段成比例.(4)可用分析法證明第(3)題,并延長(zhǎng)兩腰將梯形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題.延長(zhǎng)BA,CD交于S,AF∥MC(5)用運(yùn)動(dòng)的觀點(diǎn)將問(wèn)題進(jìn)行推廣.若直線EF平行移動(dòng)后不過(guò)點(diǎn)O,分別交AB,BD,AC,CD于E,O1,O2,F(xiàn),如圖5-126(b),O1F與O2F是否相等?為什么?(6)其它常用的推廣問(wèn)題的方法有:類比、從特殊到一般等例3已知:如圖5-127,在ΔABC中,AB=AC,D為BC中點(diǎn),DE⊥AC于E,F(xiàn)AF交BE于M.求證:AF⊥BE.(1)分解基本圖形探求解題思路.(2)總結(jié)利用相似三角形的性質(zhì)證明兩角相等,進(jìn)一步證明兩直線位置關(guān)系(平行、垂直等)ADDE————的方法,利用ΔADE∽ΔDCE得到DCCFADDF——=——結(jié)合中點(diǎn)定義得到BCCE,結(jié)合∠3=∠C,得到ΔBEC∽ΔAFD,因此∠1=∠2.進(jìn)一步可得到AF⊥BE.(3)總結(jié)證明四條線段成比例的常用方法:①比例的定義;②平行線分線段成比例定理;③三角形相似的預(yù)備定理;④直接利用相似三角形的性質(zhì);⑤利用中間比等量代換;⑥利用面積關(guān)系.例4已知:如圖5-128,RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.論.掌握基本圖形“RtΔABC,∠C=90°,CD⊥AB于D”中的常用結(jié)論.①勾股定理:AC2+BC2=AB2.2=AD4=AD22=(AE,利用ΔBDF∽ΔDAE,證得命題得證.一、銳角三角函數(shù):在直角三角形ABC中,∠C是直角,如圖5-11、正弦:把銳角A的對(duì)邊與斜邊的比叫做∠A的正弦,記作sinA2、余弦:把銳角A的鄰邊與斜邊的比叫做∠A的余弦,記作cosA3、正切:把銳角A的對(duì)邊與鄰邊的比叫做∠A的正切,記作tanA4、余切:把銳角A的鄰邊與對(duì)邊的比叫做∠A的余切,記作cotAa===ba5、銳角三角函數(shù):銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)說(shuō)明:銳角三角函數(shù)都不能取負(fù)值。<;6、銳角的正弦和余弦之間的關(guān)系任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值。7、銳角的正切和余切之間的關(guān)系任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值。8、三角函數(shù)值的變化規(guī)律(1)當(dāng)角度在0°—90°間變化時(shí),正弦值(正切值隨著角度的增大(或減小)而增大(或減?。?、同角三角函數(shù)關(guān)系公式二、解直角三角形由直角三角形中,除直角外的已知元素,求出所有未知元素的過(guò)程,叫做解直角三角形。EQ\*jc3\*hps35\o\al(\s\up12(b),a)o三、應(yīng)用舉例是實(shí)際問(wèn)題中的解直角三角形,或者說(shuō)用解直角三角形的方法解決實(shí)際問(wèn)題。(2)跨度、中柱:如房屋頂人字架跨度為AB,見(jiàn)圖5—4如燕尾槽的深度,見(jiàn)圖5—5例1、根據(jù)下列條件,解直角三角形.還a=10,LB=45";?a=3乒,c=5.例2、在平地上一點(diǎn)C,測(cè)得山頂A的仰角為30°,向山沿分析:此題一方面可引導(dǎo)學(xué)生復(fù)習(xí)仰角、俯角的概念,同時(shí),可引如圖6-39,根據(jù)題意可得AB⊥BC,得∠ABC=90°,△ABD和△ABC都是直角三角形,且C、D、B在同一直線上,由∠ADB=45°,AB=BD,CD=20米,可得BC=20+AB,在Rt△ABC中,∠C=30°,可得AB與BC之間的關(guān)系,因此山高AB可求.學(xué)生在分析此題時(shí)遇到的困難是:在Rt△ABC中和Rt△ABD中,都找不出一條已知邊,而題目中的已知條件CD=20米又不會(huì)用.解:略例題3如圖6-40,水庫(kù)的橫截面是梯形,壩頂寬6m,壩高23m,斜坡AB:,:,0.1m).分析:坡度問(wèn)題是解直角三角形的一個(gè)重要應(yīng)用,學(xué)生在解坡1.對(duì)坡度概念不理解導(dǎo)致不會(huì)運(yùn)用題目中的坡度條件;2.坡度問(wèn)題計(jì)算量較大,學(xué)生易出錯(cuò);3.常需添加輔助線將圖形分割成直角三角形和矩形.圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)??;小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。圓心相同,半徑不相等的兩個(gè)圓叫同心圓。能夠重合的兩個(gè)圓叫等圓。在同圓或等圓中,能夠互相重合的弧叫等弧。二、過(guò)三點(diǎn)的圓l、過(guò)三點(diǎn)的圓過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。②從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。例如:求證三角形中最多只有一個(gè)角是鈍角。證明:設(shè)有兩個(gè)以上是鈍角即最多只能有一個(gè)是鈍角。三、垂直于弦的直徑圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。推理2:圓兩條平行弦所夾的弧相等。四、圓心角、弧、弦、弦心距之間的關(guān)系圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。五、圓周角頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。六、圓的內(nèi)接四邊形多邊形的所有頂點(diǎn)都在同一個(gè)圓上,這個(gè)多邊形叫圓內(nèi)接多邊形,這個(gè)圓叫這個(gè)多邊形的外接圓定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。∠DEF=∠B∠DEF+∠A=180°∴∠A+∠B=18ry七、直線和圓的位置關(guān)系1、直線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交,這時(shí)直線叫圓的割線直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫圓的切線,唯一的公共點(diǎn)叫切點(diǎn)。直線和圓沒(méi)有公共點(diǎn)時(shí),叫直線和圓相離。直線和圓相交今d<r;直線和圓相切今d=r;直線和圓相離今d>r;直線和圓相交今d<r八、切線的判定和性質(zhì)切線的判定:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑推理1:經(jīng)過(guò)圓心且垂直干切線的直線必經(jīng)過(guò)切點(diǎn)。九、三角形的內(nèi)切圓要求會(huì)作圖,使它和己知三角形的各邊都相切∵分角線上的點(diǎn)到角的兩邊距離相等。這樣作出的圓是三角形的內(nèi)切圓,其圓心叫內(nèi)心,三角形叫圓的外切三角形。和多邊形各邊都相切的圓叫多邊形的內(nèi)切圓,多邊形叫圓的外切多邊形。十、切線長(zhǎng)定理經(jīng)過(guò)圓外一點(diǎn)可作圓的兩條切線。在經(jīng)過(guò)圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng),叫這切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等。圓心和這一點(diǎn)的連線平分兩條切線的夾AB=AC,∠1=∠2頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫弦切角。弦切角定理弦切角等于它所央的弧對(duì)的圓周角。推理如果兩個(gè)弦切角所央的弧相等,那么這兩個(gè)弦切角也相等。則有:∠C=∠BAE,∠BAE=∠D∴∠C=∠D十二、和圓有關(guān)的比例線段相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。推理:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)。切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。推理:從圓外一點(diǎn)引兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等,如圖6-8,若2十三、圓和圓的位置關(guān)系如圖6-91、兩圓外離今d>R+r;2、兩圓外切今d=R+r;4、兩圓內(nèi)切今d=R-rR>r)定理相交兩圓的連心線垂直平分丙兩圓的公共弦。平分公切線兩平分公切線兩和兩個(gè)圓都相切的直線叫兩圓的圓在公切線同旁時(shí),叫外公切線,在旁時(shí),叫內(nèi)公切線,公切線上兩個(gè)切如圖6-11,若A、B、C、D為切點(diǎn),則AB為內(nèi)公切線長(zhǎng),CD為外公切線長(zhǎng)內(nèi)外公切線中的重要直角三角形,如圖6-12,OO1A為直角三角形。十五、相切在作圖中的應(yīng)用連接時(shí),線段與圓弧,圓弧與圓弧在連接外相切,如圖6-14十六、正多邊形和圓各邊相等,各
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)性化聘用協(xié)議:2024年版權(quán)益保障版A版
- 2025版臨時(shí)合作項(xiàng)目聘用協(xié)議4篇
- 2025年度市政道路大理石鋪裝及后期養(yǎng)護(hù)管理合同4篇
- 2025年度個(gè)人快遞分揀中心租賃合同樣本4篇
- 智能家居新趨勢(shì)提升家庭生活質(zhì)量
- 教育與培訓(xùn)中的創(chuàng)新思維教學(xué)方法探討
- SSL證書(shū)的申請(qǐng)與配置(2024版)3篇
- 家庭教育中的自然教育與戶外活動(dòng)結(jié)合
- 2025年度土地承包權(quán)抵押融資承包合同模板4篇
- 2025年度瑪雅酒店客房預(yù)訂管理合同4篇
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 初一到初三英語(yǔ)單詞表2182個(gè)帶音標(biāo)打印版
- 2024年秋季人教版七年級(jí)上冊(cè)生物全冊(cè)教學(xué)課件(2024年秋季新版教材)
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(kù)(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計(jì)6800字(論文)】
- 鐵路項(xiàng)目征地拆遷工作體會(huì)課件
- 醫(yī)院死亡報(bào)告年終分析報(bào)告
- 中國(guó)教育史(第四版)全套教學(xué)課件
- 上海民辦楊浦實(shí)驗(yàn)學(xué)校初一新生分班(摸底)語(yǔ)文考試模擬試卷(10套試卷帶答案解析)
- 圍手術(shù)期應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論