版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年外研版三年級起點高一數(shù)學(xué)上冊月考試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共8題,共16分)1、設(shè)a>b>c>0,則的最小值是()
A.2
B.4
C.
D.5
2、函數(shù)的定義域是()
A..
B..
C..
D..
3、【題文】滿足M且的集合M的個數(shù)是()A.1B.2C.3D.44、【題文】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)成立,則不等式的解集是A.B.C.D.5、【題文】若函數(shù)在的最小值為-2,則實數(shù)的值為()A.-3B.-2C.-1D.16、已知則的值為()A.B.C.D.7、集合M={x|x=k∈Z},N={x|x=k∈Z},則()A.M=NB.M?NC.M?ND.M∩N=?8、△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.且a:b:c=3:5:7試判斷該三角形的形狀()A.鈍角三角形B.銳角三角形C.直角三角形D.等邊三角形評卷人得分二、填空題(共5題,共10分)9、已知則的值等于____.10、設(shè)扇形的半徑長為面積為則扇形的圓心角的弧度數(shù)是11、【題文】已知直線平面且給出下列四個命題:
①若∥則②若則∥
③若則∥④若∥則
其中為真命題的序號是_______12、如圖,設(shè)A,B兩點在河的兩岸,一測量者在A的同側(cè),在A所在的河岸邊選定一點C,測出AC的距離為50m,∠ACB=45°,∠CAB=105°后,則A,B兩點的距離為____m.
13、若點(a,9)在函數(shù)y=3x的圖象上,則tan的值為______.評卷人得分三、作圖題(共6題,共12分)14、畫出計算1++++的程序框圖.15、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.
16、請畫出如圖幾何體的三視圖.
17、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個過程的位移示意圖.18、繪制以下算法對應(yīng)的程序框圖:
第一步;輸入變量x;
第二步,根據(jù)函數(shù)f(x)=
對變量y賦值;使y=f(x);
第三步,輸出變量y的值.19、已知簡單組合體如圖;試畫出它的三視圖(尺寸不做嚴(yán)格要求)
評卷人得分四、計算題(共2題,共12分)20、如圖,兩個等圓圓O1,O2外切,O1A、O1B分別與圓O2切于點A、B.設(shè)∠AO1B=α,若A(sinα,0),B(cosα,0)為拋物線y=x2+bx+c與x軸的兩個交點,則b=____,c=____.21、如果菱形有一個角是45°,且邊長是2,那么這個菱形兩條對角線的乘積等于____.評卷人得分五、證明題(共3題,共24分)22、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.23、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.24、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.評卷人得分六、綜合題(共1題,共4分)25、已知拋物線y=ax2-2ax+c-1的頂點在直線y=-上,與x軸相交于B(α,0)、C(β,0)兩點,其中α<β,且α2+β2=10.
(1)求這個拋物線的解析式;
(2)設(shè)這個拋物線與y軸的交點為P;H是線段BC上的一個動點,過H作HK∥PB,交PC于K,連接PH,記線段BH的長為t,△PHK的面積為S,試將S表示成t的函數(shù);
(3)求S的最大值,以及S取最大值時過H、K兩點的直線的解析式.參考答案一、選擇題(共8題,共16分)1、B【分析】
=
=
≥0+2+2=4
當(dāng)且僅當(dāng)a-5c=0,ab=1,a(a-b)=1時等號成立。
如取a=b=c=滿足條件.
故選B
【解析】【答案】先把整理成進(jìn)而利用均值不等式求得原式的最小值.
2、B【分析】
由題意可得sinx-≥0?sinx≥
又x∈(0;2π)
∴函數(shù)的定義域是.
故選B.
【解析】【答案】依題意可得sinx-≥0即sinx≥解不等式可得.
3、B【分析】【解析】
試題分析:由可知M中至少含有元素但沒有由M可知M中還可能還有或
考點:集合關(guān)系及運算。
點評:得到M中沒有這一點容易忽略【解析】【答案】B4、D【分析】【解析】解:因為函數(shù)是定義在R上的奇函數(shù),當(dāng)則說明函數(shù)在大于零區(qū)間上遞減,那么結(jié)合對稱性可知滿足題意的解集為x<-2,0<2,選D【解析】【答案】D5、B【分析】【解析】略【解析】【答案】B6、B【分析】【分析】由題意可知,選B
【點評】遇到關(guān)于的齊次式,都可以用解析中的方法解決,這是最簡單的方法.7、C【分析】解:對于集合N,當(dāng)k=2n-1,n∈Z,時,N={x|x=n∈Z}=M;
當(dāng)k=2n,n∈Z,時N={x|x=n∈Z};
∴集合M;N的關(guān)系為M?N.
故選:C.
從元素滿足的公共屬性的結(jié)構(gòu)入手;對集合N中的k分奇數(shù)和偶數(shù)討論,從而可得兩集合的關(guān)系.
本題的考點是集合的包含關(guān)系判斷及應(yīng)用,解題的關(guān)鍵是對集合M中的k分奇數(shù)和偶數(shù)討論.【解析】【答案】C8、A【分析】解:∵a:b:c=3:5:7;
∴設(shè)a=3t,b=5t;c=7t,(t>0);
∴cosC==-
∴∠C=120°;
∴三角形為鈍角三角形.
故選:A.
設(shè)a=3t,b=5t,c=7t,(t>0),由余弦定理可求cosC=-可得∠C=120°,即可得解.
本題考查三角形形狀的判定,涉及余弦定理在解三角形中的應(yīng)用,屬基礎(chǔ)題.【解析】【答案】A二、填空題(共5題,共10分)9、略
【分析】【解析】試題分析:∵∴∴∴考點:本題考查了二倍角公式的運用【解析】【答案】10、略
【分析】試題分析:由扇形面積公式知解得考點:扇形面積公式.【解析】【答案】11、略
【分析】【解析】解:因為。
①若∥則成立。
②若則∥不成立;可能相交;
③若則∥不成立;可能相交。
④若∥則成立,符合面面垂直的判定【解析】【答案】(1),(4);12、50【分析】【解答】解:在△ABC中;∵∠ACB=45°,∠CAB=105°
∴∠B=30°
由正弦定理可得:
∴=50m
故答案為:50
【分析】先利用三角形的內(nèi)角和求出∠B=30°,再利用正弦定理,即可得出結(jié)論.13、略
【分析】解:將x=a,y=9代入函數(shù)y=3x中;
得:9=3a;即a=2;
∴tan=-tan=-
故答案為:-.
將點坐標(biāo)代入函數(shù)解析式求出求出a的值;即可求出所求式子的值.
此題考查了運用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.【解析】-三、作圖題(共6題,共12分)14、解:程序框圖如下:
【分析】【分析】根據(jù)題意,設(shè)計的程序框圖時需要分別設(shè)置一個累加變量S和一個計數(shù)變量i,以及判斷項數(shù)的判斷框.15、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.16、解:如圖所示:
【分析】【分析】由幾何體是圓柱上面放一個圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長方形上邊加一個三角形,長方形上邊加一個三角形,圓加一點.17、解:由題意作示意圖如下;
【分析】【分析】由題意作示意圖。18、解:程序框圖如下:
【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時,函數(shù)解析式不同,因此當(dāng)給出一個自變量x的值時,必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因為函數(shù)解析式分了三段,所以判斷框需要兩個,即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.19、
解:幾何體的三視圖為:
【分析】【分析】利用三視圖的作法,畫出三視圖即可.四、計算題(共2題,共12分)20、略
【分析】【分析】連接O1O2,O2A,O2B,根據(jù)切線的性質(zhì)得到直角三角形,再由直角三角形中邊的關(guān)系得到角的度數(shù),確定A,B兩點的坐標(biāo),用待定系數(shù)法可以求出b,c的值.【解析】【解答】解:如圖:
連接O1O2,O2A,O2B;
∵O1A,O1B是⊙O2的切線,∴O1A⊥O2A,O1B⊥O2B;
又因為兩圓是等圓,所以O(shè)1O2=2O2A,得∠AO1O2=30°
∴∠AO1B=60°;即:α=60°;
∴A(,0)B(;0).
把A;B兩點的坐標(biāo)代入拋物線得:
;
解方程組得:.
故答案為:-,.21、略
【分析】【分析】利用三角函數(shù)先求出菱形的高,再根據(jù)菱形的面積等于底乘以相應(yīng)高求出面積,然后根據(jù)菱形面積的兩種求法可知兩條對角線的乘積就等于面積的2倍.【解析】【解答】解:根據(jù)題意,菱形的高=2sin45°=;
∴菱形的面積=2×=2;
∵菱形的面積=×兩對角線的乘積;
∴兩對角線的乘積=4.
故答案為4.五、證明題(共3題,共24分)22、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.23、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.24、略
【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.六、綜合題(共1題,共4分)25、略
【分析】【分析】(1)把頂點A的坐標(biāo)代入直線的解析式得出c=a+;根據(jù)根與系數(shù)的關(guān)系求出c=1-3a,得出方程組,求出方程組的解即可;
(2)求出P、B、C的坐標(biāo),BC=4,根據(jù)sin∠BCP==,和HK∥BP,得出=,求出PK=t;過H作HG⊥PC于G,根據(jù)三角形的面積公式即可求出答案;
(3)根據(jù)S=-(t-2)2+2求出S取最大值,作KK′⊥HC于K′,求出KK′和OK′,得到點K的坐標(biāo),設(shè)所求直線的解析式為y=kx+b,代入得到方程組求出即可.【解析】【解答】解:(1)由y=ax2-2ax+c-1=a(x-1)2+c-1-a得拋物線的頂點為
A(1;c-1-a).
∵點A在直線y=-x+8上;
∴c-1-a=-×1+8;
即c=a+;①
又拋物線與x軸相交于B(α;0);C(β,0)兩點;
∴α、β是方程ax2-2ax+c-1=0的兩個根.
∴α+β=2,αβ=;
又α2+β2=10,即(α+β)2-2αβ=10;
∴4-2×=10;
即c=1-3a②;
由①②解得:a=-;c=5;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防設(shè)備制造與安裝一體化服務(wù)合同協(xié)議書2篇
- 二零二五年度面包烘焙產(chǎn)品出口合同4篇
- 二零二五年度美食攤位租賃與品牌孵化合同4篇
- 2025年度個人對旅游公司借款協(xié)議4篇
- 二零二五獼猴桃種植基地土地租賃與智能灌溉系統(tǒng)合同4篇
- 錄用條件協(xié)議書(2篇)
- 二零二五年度模板木方質(zhì)量保證合同范本4篇
- 市場研究專題報告十 -急性缺血性腦卒中藥物市場研究專題報告 202410
- 2025年銷售合同簽訂全流程規(guī)范與操作指南2篇
- 博士答辯導(dǎo)師講座模板
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測試卷(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)人教版
- 2024年廣東省公務(wù)員錄用考試《行測》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實驗技術(shù)教程
- 黑色素的合成與美白產(chǎn)品的研究進(jìn)展
- 金蓉顆粒-臨床用藥解讀
- 法治副校長專題培訓(xùn)課件
- 汽車、電動車電池火災(zāi)應(yīng)對
- 中醫(yī)藥適宜培訓(xùn)-刮痧療法教學(xué)課件
- 免疫組化he染色fishish
評論
0/150
提交評論