![長(zhǎng)春健康職業(yè)學(xué)院《社會(huì)統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view11/M00/23/2B/wKhkGWebL4GAVLZIAAJfiRb4bPE034.jpg)
![長(zhǎng)春健康職業(yè)學(xué)院《社會(huì)統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view11/M00/23/2B/wKhkGWebL4GAVLZIAAJfiRb4bPE0342.jpg)
![長(zhǎng)春健康職業(yè)學(xué)院《社會(huì)統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view11/M00/23/2B/wKhkGWebL4GAVLZIAAJfiRb4bPE0343.jpg)
![長(zhǎng)春健康職業(yè)學(xué)院《社會(huì)統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view11/M00/23/2B/wKhkGWebL4GAVLZIAAJfiRb4bPE0344.jpg)
![長(zhǎng)春健康職業(yè)學(xué)院《社會(huì)統(tǒng)計(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view11/M00/23/2B/wKhkGWebL4GAVLZIAAJfiRb4bPE0345.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)長(zhǎng)春健康職業(yè)學(xué)院《社會(huì)統(tǒng)計(jì)學(xué)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門(mén)的銷(xiāo)售數(shù)據(jù)、庫(kù)存數(shù)據(jù)和客戶(hù)數(shù)據(jù),這些數(shù)據(jù)格式不一致且存在重復(fù)和沖突。以下哪種數(shù)據(jù)集成方法在處理這種復(fù)雜的數(shù)據(jù)整合問(wèn)題時(shí)更能確保數(shù)據(jù)的一致性和準(zhǔn)確性?()A.基于ETL工具的集成B.手動(dòng)編寫(xiě)代碼進(jìn)行集成C.直接合并數(shù)據(jù),忽略沖突D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行集成2、假設(shè)我們正在分析客戶(hù)的購(gòu)買(mǎi)行為數(shù)據(jù),想要了解客戶(hù)購(gòu)買(mǎi)某一產(chǎn)品的頻率分布。以下哪種統(tǒng)計(jì)量最適合描述這種數(shù)據(jù)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差3、假設(shè)我們要評(píng)估一個(gè)分類(lèi)模型的性能,除了準(zhǔn)確率外,以下哪個(gè)指標(biāo)還能反映模型對(duì)于不同類(lèi)別的區(qū)分能力?()A.召回率B.F1值C.均方誤差D.混淆矩陣4、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),如果數(shù)據(jù)存在明顯的周期性,但周期長(zhǎng)度不固定,以下哪種方法可能適用?()A.Prophet模型B.LSTM神經(jīng)網(wǎng)絡(luò)C.動(dòng)態(tài)時(shí)間規(guī)整D.以上都不是5、在數(shù)據(jù)分析過(guò)程中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵步驟。以下關(guān)于數(shù)據(jù)清洗的目的,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性6、對(duì)于一個(gè)具有分類(lèi)和數(shù)值型特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)處理,以下哪些步驟可能會(huì)被包括?()A.編碼分類(lèi)特征B.處理異常值C.標(biāo)準(zhǔn)化數(shù)值型特征D.以上都是7、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)有很多種,其中星型架構(gòu)是一種常用的架構(gòu)。以下關(guān)于星型架構(gòu)的描述中,錯(cuò)誤的是?()A.星型架構(gòu)由事實(shí)表和維度表組成B.事實(shí)表中包含了大量的詳細(xì)數(shù)據(jù),維度表中包含了對(duì)事實(shí)表的描述信息C.星型架構(gòu)的數(shù)據(jù)查詢(xún)效率較高,適用于大規(guī)模數(shù)據(jù)集D.星型架構(gòu)的設(shè)計(jì)和維護(hù)比較復(fù)雜,需要專(zhuān)業(yè)的技術(shù)和知識(shí)8、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以將來(lái)自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉(cāng)庫(kù)可以提供高效的數(shù)據(jù)查詢(xún)和分析功能C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源9、數(shù)據(jù)分析中的文本挖掘用于從文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要分析大量的客戶(hù)評(píng)論數(shù)據(jù),以了解客戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度,以下哪種技術(shù)可能是關(guān)鍵的第一步?()A.詞頻統(tǒng)計(jì)B.情感分析C.主題建模D.命名實(shí)體識(shí)別10、當(dāng)分析一組時(shí)間序列數(shù)據(jù)時(shí),發(fā)現(xiàn)數(shù)據(jù)存在明顯的季節(jié)性波動(dòng)。為了消除季節(jié)性影響,應(yīng)該采用哪種方法?()A.移動(dòng)平均B.指數(shù)平滑C.季節(jié)指數(shù)法D.線(xiàn)性回歸11、對(duì)于一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,若要進(jìn)行情感分析,以下哪種技術(shù)可能會(huì)被用到?()A.自然語(yǔ)言處理B.圖像識(shí)別C.語(yǔ)音識(shí)別D.機(jī)器學(xué)習(xí)12、在數(shù)據(jù)分析的實(shí)時(shí)數(shù)據(jù)分析場(chǎng)景中,假設(shè)要對(duì)不斷產(chǎn)生的數(shù)據(jù)流進(jìn)行快速處理和分析,以下哪種技術(shù)或架構(gòu)可能是合適的選擇?()A.流處理框架,如ApacheFlinkB.批處理框架,如ApacheHadoopC.關(guān)系型數(shù)據(jù)庫(kù),進(jìn)行實(shí)時(shí)查詢(xún)D.不進(jìn)行實(shí)時(shí)處理,先存儲(chǔ)數(shù)據(jù)再事后分析13、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)量可以幫助我們更好地理解數(shù)據(jù)。關(guān)于均值、中位數(shù)和眾數(shù),以下描述錯(cuò)誤的是:()A.均值容易受到極端值的影響B(tài).中位數(shù)是將數(shù)據(jù)排序后位于中間位置的數(shù)值C.眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,一定唯一D.對(duì)于偏態(tài)分布的數(shù)據(jù),中位數(shù)可能比均值更能反映數(shù)據(jù)的中心位置14、在數(shù)據(jù)分析中,抽樣是獲取代表性數(shù)據(jù)的常用方法。假設(shè)要從一個(gè)大型數(shù)據(jù)庫(kù)中抽取樣本以估計(jì)總體特征,以下關(guān)于抽樣方法選擇的描述,正確的是:()A.采用簡(jiǎn)單隨機(jī)抽樣,不考慮總體的結(jié)構(gòu)和特征B.隨意選擇抽樣方法,不考慮樣本的代表性和誤差C.根據(jù)總體的特點(diǎn)和研究目的,選擇合適的抽樣方法,如分層抽樣、系統(tǒng)抽樣等,并控制抽樣誤差D.為了方便,抽取少量樣本,不考慮樣本量對(duì)結(jié)果的影響15、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達(dá)數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢(shì)C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準(zhǔn)確性和可靠性D.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力16、在進(jìn)行數(shù)據(jù)分析時(shí),特征工程對(duì)于模型的性能有著重要影響。假設(shè)你正在處理一個(gè)預(yù)測(cè)房?jī)r(jià)的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項(xiàng)是最需要謹(jǐn)慎處理的?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來(lái)不重要的特征,以簡(jiǎn)化模型17、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而不僅僅是相關(guān)性。假設(shè)我們想要研究某種藥物是否真正導(dǎo)致了病情的改善,以下哪種方法或設(shè)計(jì)可以幫助我們進(jìn)行因果推斷?()A.隨機(jī)對(duì)照試驗(yàn)B.觀察性研究中的工具變量法C.斷點(diǎn)回歸設(shè)計(jì)D.以上都是18、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì),以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不正確的?()A.可以使用折線(xiàn)圖清晰地呈現(xiàn)經(jīng)濟(jì)指標(biāo)隨時(shí)間的變化B.柱狀圖能夠有效地對(duì)比不同地區(qū)在特定時(shí)間點(diǎn)的經(jīng)濟(jì)數(shù)值C.為了使圖表更美觀,可以添加過(guò)多的裝飾元素,即使這可能會(huì)干擾數(shù)據(jù)的解讀D.選擇合適的顏色和標(biāo)記,能夠增強(qiáng)圖表的可讀性和吸引力19、在數(shù)據(jù)庫(kù)管理中,當(dāng)多個(gè)用戶(hù)同時(shí)對(duì)同一數(shù)據(jù)表進(jìn)行操作時(shí),為了保證數(shù)據(jù)的一致性,通常會(huì)采用哪種技術(shù)?()A.數(shù)據(jù)備份B.事務(wù)處理C.數(shù)據(jù)加密D.索引優(yōu)化20、在處理時(shí)間序列數(shù)據(jù)時(shí),除了考慮趨勢(shì)和季節(jié)性,還需要考慮數(shù)據(jù)的隨機(jī)性。假設(shè)要使用一種方法來(lái)平滑時(shí)間序列數(shù)據(jù),同時(shí)保留數(shù)據(jù)的主要特征,以下哪種方法可能是合適的?()A.簡(jiǎn)單移動(dòng)平均B.加權(quán)移動(dòng)平均C.指數(shù)加權(quán)移動(dòng)平均D.以上方法都可以二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是數(shù)據(jù)挖掘中的分類(lèi)不平衡問(wèn)題,說(shuō)明其對(duì)模型訓(xùn)練的影響,并列舉至少兩種解決分類(lèi)不平衡問(wèn)題的方法。2、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的價(jià)值評(píng)估,包括直接價(jià)值、潛在價(jià)值和風(fēng)險(xiǎn)價(jià)值等方面的評(píng)估方法。3、(本題5分)解釋什么是模型并行和數(shù)據(jù)并行,說(shuō)明它們?cè)诜植际接?xùn)練中的應(yīng)用和區(qū)別,并舉例分析。4、(本題5分)描述在大數(shù)據(jù)環(huán)境下,如何保障數(shù)據(jù)的安全性和隱私性,包括數(shù)據(jù)加密、訪(fǎng)問(wèn)控制等技術(shù)和策略的應(yīng)用。5、(本題5分)在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一步。請(qǐng)?jiān)敿?xì)闡述數(shù)據(jù)清洗的主要任務(wù)和常用方法,并舉例說(shuō)明其在實(shí)際項(xiàng)目中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家金融公司積累了客戶(hù)的信用記錄、貸款金額、還款情況、收入水平等數(shù)據(jù)。分析怎樣運(yùn)用這些數(shù)據(jù)建立信用評(píng)估模型,降低貸款風(fēng)險(xiǎn)。2、(本題5分)某超市的生鮮類(lèi)目記錄了銷(xiāo)售數(shù)據(jù),包括商品種類(lèi)、銷(xiāo)售數(shù)量、價(jià)格、促銷(xiāo)活動(dòng)、季節(jié)因素等。分析季節(jié)因素對(duì)不同生鮮商品銷(xiāo)售和促銷(xiāo)活動(dòng)效果的影響。3、(本題5分)一家電商企業(yè)擁有大量的銷(xiāo)售數(shù)據(jù),包括商品類(lèi)別、價(jià)格、銷(xiāo)量、用戶(hù)評(píng)價(jià)等。請(qǐng)分析不同商品類(lèi)別在不同價(jià)格區(qū)間的銷(xiāo)量分布情況,并找出最受歡迎的商品類(lèi)別和價(jià)格組合。4、(本題5分)某在線(xiàn)音樂(lè)平臺(tái)存有用戶(hù)的聽(tīng)歌數(shù)據(jù),包括歌曲類(lèi)型、歌手、播放次數(shù)、收藏行為等。分析用戶(hù)對(duì)不同類(lèi)型歌曲和歌手的喜好程度以及收藏行為的特點(diǎn)。5、(本題5分)某金融科技平臺(tái)收集了用戶(hù)的投資行為、風(fēng)險(xiǎn)偏好、資產(chǎn)配置等。研究怎樣借助這些數(shù)據(jù)提供個(gè)性化的投資建議和財(cái)富管理服務(wù)。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在影視娛樂(lè)行業(yè),觀眾的觀看行為和評(píng)價(jià)數(shù)據(jù)對(duì)于內(nèi)容創(chuàng)作和推薦具有重要意義。以某在線(xiàn)視頻平臺(tái)為例,分析如何運(yùn)用數(shù)據(jù)分析來(lái)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)培訓(xùn)機(jī)構(gòu)負(fù)責(zé)人職責(zé)及課程設(shè)計(jì)
- 北京房屋出租居間合同范本
- 浙江省空中別墅項(xiàng)目可行性研究報(bào)告
- 工業(yè)互聯(lián)網(wǎng)平臺(tái)合同
- 單位物業(yè)服務(wù)合同
- 勞動(dòng)合同銷(xiāo)售員勞動(dòng)合同
- 社交媒體口碑管理維護(hù)合同
- 生態(tài)保護(hù)紅線(xiàn)監(jiān)管與評(píng)估服務(wù)合同
- 廣告制作合同
- 二零二四寧波事業(yè)單位智能制造項(xiàng)目聘用合同3篇
- 蛋糕店服務(wù)員勞動(dòng)合同
- 土地買(mǎi)賣(mài)合同參考模板
- 2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題一-微專(zhuān)題10-同構(gòu)函數(shù)問(wèn)題-專(zhuān)項(xiàng)訓(xùn)練【含答案】
- 2025年天津市政建設(shè)集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 2024-2030年中國(guó)烘焙食品行業(yè)運(yùn)營(yíng)效益及營(yíng)銷(xiāo)前景預(yù)測(cè)報(bào)告
- 寧德時(shí)代筆試題庫(kù)
- 康復(fù)醫(yī)院患者隱私保護(hù)管理制度
- 公司安全事故隱患內(nèi)部舉報(bào)、報(bào)告獎(jiǎng)勵(lì)制度
- 沈陽(yáng)理工大學(xué)《數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
- 北京三甲中醫(yī)疼痛科合作方案
- QCT957-2023洗掃車(chē)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論