




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年浙教新版高二數學下冊月考試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共8題,共16分)1、已知的三邊和其面積滿足且則的最大值為A.B.C.D.2、雙曲線的漸近線方程是()
A.
B.
C.
D.
3、如圖,一個圓錐的側面展開圖是中心角為90°面積為S1的扇形,若圓錐的全面積為S2,則等于()
A.
B.2
C.
D.
4、下列命題正確的個數為()①>0;②③<1;④A.1B.2C.3D.45、已知都是定義在R上的函數,且=現任取正整數則在有窮數列{}(n=1,2,?,10)中前k項和大于的概率是()A.B.C.D.6、【題文】已知則的最大值與最小值的差為()A.8B.2C.10D.57、若則A.B.C.D.8、在命題“若角A是鈍角,則△ABC是鈍角三角形”及其逆命題,否命題,逆否命題中,真命題的個數是()A.0B.2C.3D.4評卷人得分二、填空題(共5題,共10分)9、在等比數列{an}中,若a1=1,a2=4,則公比q=____.10、在△ABC中,a=2,則b·cosC+c·cosB的值為__________.11、【題文】某校有高中生人,初中生人,教師人,現用分層抽樣方法從所有師生中抽取一個容量為的樣本,已知從初中生中抽取人,那么N=____12、【題文】某地區(qū)對兩所高中學校進行學生體質狀況抽測,甲校有學生800人,乙校有學生500人,現用分層抽樣的方法在這1300名學生中抽取一個樣本.已知在甲校抽取了48人,則在乙校應抽取學生人數為____.13、曲線y=和直線y=x圍成的圖形面積是____.評卷人得分三、作圖題(共7題,共14分)14、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
15、A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)16、已知,A,B在直線l的兩側,在l上求一點,使得PA+PB最小.(如圖所示)17、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
18、A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.(如圖所示)19、已知,A,B在直線l的兩側,在l上求一點,使得PA+PB最?。ㄈ鐖D所示)20、分別畫一個三棱錐和一個四棱臺.評卷人得分四、解答題(共1題,共3分)21、【題文】在中,已知
(1)判斷的形狀;
(2)若線段的延長線上存在點使求點坐標.評卷人得分五、計算題(共1題,共7分)22、如圖,正三角形ABC的邊長為2,M是BC邊上的中點,P是AC邊上的一個動點,求PB+PM的最小值.評卷人得分六、綜合題(共1題,共4分)23、(2009?新洲區(qū)校級模擬)如圖,已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數y=的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標是(a、b),由點P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.則AF?BE=____.參考答案一、選擇題(共8題,共16分)1、D【分析】試題分析:由S=以及余弦定理可得cosC=-sinC=再由基本不等式求得S的最大值.再由a+b≥2ab可得ab≤1,當且僅當a=b時,取等號.∴S==的最大值為.故選D.考點:余弦定理的應用,同角三角函數的基本關系,基本不等的應用.【解析】【答案】D2、B【分析】
根據雙曲線方程得,a=3b=2
∴雙曲線的漸近線方程為:y=±x
故選B.
【解析】【答案】由雙曲線方程得到a=3b=2,根據焦點在x軸上的雙曲線的漸進方程y=±x;代入即可求出結果.
3、A【分析】
設扇形半徑為R.
扇形的圓心角為90°,所以底面周長是
圓錐的底面半徑為:r,r=
所以S1==
圓錐的全面積為S2==
∴==.
故選A.
【解析】【答案】設出扇形的半徑;求出圓錐的底面周長,底面半徑,求出圓錐的側面積;全面積即可.
4、B【分析】①正確.②錯.如x=0;③正確.如x=-1;④不正確.因為為無理數【解析】【答案】B5、C【分析】因為數列{}的前n項和為由應選C【解析】【答案】C6、C【分析】【解析】
試題分析:先作出對應的可行域;根據目標函數的形式判斷其最值,代入求差即可得答。
因為t=2x+y+5取值在直線4x+y+3=0上時t取到最小值2,在的交點A(2;3)處取到最大值12,故z=|2x+y+5|的最大值與最小值分別為12,2,所以z=|2x+y+5|的最大值與最小值的差為10,故答案為C
考點:簡單線性規(guī)劃求最值。
點評:考查簡單線性規(guī)劃求最值,其做題步驟是作出可行域,由圖象判斷出最優(yōu)解,代入求最值,由于本題要通過圖象作出判斷,故作圖時要盡可能精確.【解析】【答案】C7、D【分析】【解答】∵∴選D8、B【分析】解:∵原命題“若角A是鈍角;則△ABC是鈍角三角形”
∴原命題是真命題。
∴逆否命題是真命題。
又∵逆命題:“若△ABC是鈍角三角形;則角A是鈍角”
∴逆命題是假命題。
∴否命題是假命題。
∴真命題的個數是2個;
故選:B.
原命題;逆否命題同真同假;逆命題、否命題同真同假。
題考查的知識點簡單命題的真假判定,考查原命題和逆否命題,逆命題和否命題同真假,【解析】【答案】B二、填空題(共5題,共10分)9、略
【分析】
∵a1=1,a2=4;
∴公比q==4
故答案為:4
【解析】【答案】利用等比數列的定義;可得結論.
10、略
【分析】試題分析:由余弦定理可得b·cosC+c·cosB=考點:余弦定理公式的變形【解析】【答案】211、略
【分析】【解析】略【解析】【答案】____12、略
【分析】【解析】
試題分析:根據分層抽樣的特點:按比例,可得解得
考點:分層抽樣【解析】【答案】3013、【分析】【解答】解:曲線和直線y=x交點為:(1,1),所以圍成的圖形面積為=()|=故答案為:.
【分析】首先求出交點,然后利用定積分表示曲邊梯形的面積,計算求面積.三、作圖題(共7題,共14分)14、略
【分析】【分析】根據軸對稱的性質作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質可知AB′=AC+BC;
根據兩點之間線段最短的性質可知;C點即為所求.
15、略
【分析】【分析】作出A關于OM的對稱點A',關于ON的A對稱點A'',連接A'A'',根據兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關于OM的對稱點A';關于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關于OM對稱;A與A″關于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據兩點之間線段最短,A'A''為△ABC的最小值.16、略
【分析】【分析】顯然根據兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最??;
理由是兩點之間,線段最短.17、略
【分析】【分析】根據軸對稱的性質作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質可知AB′=AC+BC;
根據兩點之間線段最短的性質可知;C點即為所求.
18、略
【分析】【分析】作出A關于OM的對稱點A',關于ON的A對稱點A'',連接A'A'',根據兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關于OM的對稱點A';關于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關于OM對稱;A與A″關于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據兩點之間線段最短,A'A''為△ABC的最小值.19、略
【分析】【分析】顯然根據兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最小;
理由是兩點之間,線段最短.20、解:畫三棱錐可分三步完成。
第一步:畫底面﹣﹣畫一個三角形;
第二步:確定頂點﹣﹣在底面外任一點;
第三步:畫側棱﹣﹣連接頂點與底面三角形各頂點.
畫四棱可分三步完成。
第一步:畫一個四棱錐;
第二步:在四棱錐一條側棱上取一點;從這點開始,順次在各個面內畫與底面對應線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫三棱錐和畫四棱臺都是需要先畫底面,再確定平面外一點連接這點與底面上的頂點,得到錐體,在畫四棱臺時,在四棱錐一條側棱上取一點,從這點開始,順次在各個面內畫與底面對應線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共1題,共3分)21、略
【分析】【解析】
試題分析:解:(1)根據題意,由于那么利用兩點距離公式可知,AB=AC,同時滿足故可知三角形為等腰直角三角形。
(2)根據題意,由于則可知(x-3,y-1)=(2,1),J解得
考點:向量共線。
點評:主要是考查了向量的模和向量的共線的綜合運用,屬于基礎題【解析】【答案】(1)等腰直角三角形(2)五、計算題(共1題,共7分)22、略
【分析】【分析】作點B關于AC的對稱點E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長就是PB+PM的最小值.【解析】【解答】解:如圖;作點B關于AC的對稱點E,連接EP;EB、EM、EC;
則PB+PM=PE+PM;
因此EM的長就是PB+PM的最小值.
從點M作MF⊥BE;垂足為F;
因為BC=2;
所以BM=1,BE=2=2.
因為∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.六、綜合題(共1題,共4分)23、略
【分析】【分析】根據OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標是b,因而F點的縱坐標是b,即FM=b,則得到AF=b,同理BE=a,根據(a,b)是函數y=的圖象上的點,因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025兼職國慶節(jié)臨時工合同范文
- 深圳市房屋出租合同
- 宅基地贈與合同范本
- 2025版FIDIC施工合同條款解析
- 2025授權制作廣播節(jié)目合同樣本
- 單位禮品訂購協(xié)議書
- 拆遷補償協(xié)議書范文
- 2025年03月山東海事局公開招聘事業(yè)單位人員4人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年03月南通開放大學工作人員5人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 甘肅省定西市臨洮縣文峰中學2024-2025學年高一下學期第一次月考語文試卷(含答案)
- 2025婚禮策劃服務的合同范本
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗收規(guī)范
- 貫徹落實八項規(guī)定精神情況自查表
- GA/T 1073-2013生物樣品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、異丙醇和正丁醇的頂空-氣相色譜檢驗方法
- 人教版小學語文二年級《雷雨》PPT課件
- (醫(yī)療藥品)藥店拆零藥品記錄表
- 歐標電纜外徑表
- 現澆箱梁盤扣式現澆支架施工方案(通過專家論證)
- 熱質交換課第05講(習題課1)
- 《美麗的集郵冊》朗誦
- 直線與圓錐曲線之角形面積問題
評論
0/150
提交評論