滄州二中高三數(shù)學(xué)試卷_第1頁
滄州二中高三數(shù)學(xué)試卷_第2頁
滄州二中高三數(shù)學(xué)試卷_第3頁
滄州二中高三數(shù)學(xué)試卷_第4頁
滄州二中高三數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滄州二中高三數(shù)學(xué)試卷一、選擇題

1.在下列各對函數(shù)中,若函數(shù)\(f(x)\)的圖像是函數(shù)\(g(x)\)的圖像關(guān)于\(y\)軸的對稱圖形,則\(f(x)\)和\(g(x)\)的關(guān)系是()

A.\(f(x)=g(-x)\)B.\(f(x)=g(x)\)C.\(f(x)=-g(x)\)D.\(f(x)=-g(-x)\)

2.若函數(shù)\(f(x)\)在\((0,+\infty)\)上單調(diào)遞增,且\(f(1)=2\),則下列各式中,正確的是()

A.\(f(2)>f(1)\)B.\(f(0)<f(1)\)C.\(f(1)>f(2)\)D.\(f(2)<f(0)\)

3.若函數(shù)\(f(x)=ax^2+bx+c\)的圖像開口向上,且\(f(0)=1\),\(f(1)=4\),\(f(2)=9\),則下列各式中,正確的是()

A.\(a>0\)B.\(b>0\)C.\(c>0\)D.\(a+b+c>0\)

4.已知函數(shù)\(f(x)=x^3-3x\),則\(f(x)\)的對稱中心為()

A.\((0,0)\)B.\((1,0)\)C.\((0,1)\)D.\((1,1)\)

5.若函數(shù)\(f(x)=\sqrt{x^2+1}\)的圖像上任意一點\((x,y)\)到原點的距離為\(d\),則\(d\)的最小值為()

A.\(\sqrt{2}\)B.\(1\)C.\(0\)D.無解

6.已知函數(shù)\(f(x)=x^2-2x+1\),若\(f(x)\)的圖像上任意一點\((x,y)\)到直線\(y=1\)的距離為\(d\),則\(d\)的最大值為()

A.\(2\)B.\(1\)C.\(0\)D.無解

7.若函數(shù)\(f(x)=a^x\)的圖像過點\((1,2)\),則\(a\)的值為()

A.\(2\)B.\(1\)C.\(\frac{1}{2}\)D.\(-1\)

8.若函數(shù)\(f(x)=\frac{1}{x}\)的圖像上任意一點\((x,y)\)到原點的距離為\(d\),則\(d\)的最大值為()

A.\(\sqrt{2}\)B.\(1\)C.\(0\)D.無解

9.已知函數(shù)\(f(x)=x^3-3x\),則\(f(x)\)的圖像上任意一點\((x,y)\)到直線\(y=0\)的距離為()

A.\(|x|\)B.\(|x^2|\)C.\(|x^3|\)D.\(|x^2-3x|\)

10.若函數(shù)\(f(x)=\frac{1}{x}\)的圖像上任意一點\((x,y)\)到直線\(y=1\)的距離為\(d\),則\(d\)的最小值為()

A.\(\sqrt{2}\)B.\(1\)C.\(0\)D.無解

二、判斷題

1.函數(shù)\(f(x)=ax^2+bx+c\)的圖像是一個拋物線,其中\(zhòng)(a\)、\(b\)、\(c\)是常數(shù),且\(a\neq0\)。()

2.如果函數(shù)\(f(x)\)在區(qū)間\([a,b]\)上連續(xù),且\(f(a)>f(b)\),那么\(f(x)\)在\([a,b]\)上必定存在一個零點。()

3.對于任意二次方程\(ax^2+bx+c=0\),其判別式\(b^2-4ac\)大于零時,方程有兩個不相等的實數(shù)根。()

4.在直角坐標系中,一個圓的方程可以表示為\(x^2+y^2=r^2\),其中\(zhòng)(r\)是圓的半徑。()

5.如果函數(shù)\(f(x)\)在點\(x=a\)處可導(dǎo),那么函數(shù)\(f(x)\)在點\(x=a\)處必定連續(xù)。()

三、填空題

1.若函數(shù)\(f(x)=\sqrt{x^2-4}\)的定義域為\(D\),則\(D=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡答題

1.簡述函數(shù)\(f(x)=x^3-3x\)的導(dǎo)數(shù)\(f'(x)\)的求法,并求出\(f'(x)\)。

2.已知函數(shù)\(f(x)=\frac{x^2-1}{x-1}\),求\(f(x)\)的極限\(\lim_{x\to1}f(x)\)。

3.給定直線\(y=mx+b\)和圓\(x^2+y^2=r^2\),證明:直線和圓相交的必要條件是\(m^2+1\geq\frac{1}{r^2}\)。

4.簡述二次函數(shù)\(f(x)=ax^2+bx+c\)的圖像與\(x\)軸交點的個數(shù)與判別式\(b^2-4ac\)之間的關(guān)系。

5.設(shè)函數(shù)\(f(x)=\ln(x)\),證明:對于任意\(x_1>x_2>0\),有\(zhòng)(f(x_1)-f(x_2)>\frac{x_1-x_2}{x_1x_2}\)。

五、計算題

1.計算定積分\(\int_{0}^{2}(x^2-4x+3)\,dx\)的值。

2.求函數(shù)\(f(x)=e^x-x\)在\(x=0\)處的導(dǎo)數(shù)\(f'(0)\)。

3.解方程組\(\begin{cases}2x+3y=8\\x-y=1\end{cases}\)。

4.計算復(fù)數(shù)\((1+2i)^5\)的值。

5.求函數(shù)\(f(x)=\frac{1}{x^2-4}\)在區(qū)間\([1,3]\)上的定積分\(\int_{1}^{3}f(x)\,dx\)。

六、案例分析題

1.案例背景:某公司計劃生產(chǎn)一批產(chǎn)品,已知生產(chǎn)第\(x\)件產(chǎn)品的成本為\(C(x)=100+2x\)元,其中\(zhòng)(x\)為產(chǎn)品的件數(shù)。又知每件產(chǎn)品的售價為200元,市場需求函數(shù)為\(Q(x)=500-2x\),其中\(zhòng)(x\)為市場需求量。

案例分析:

(1)求生產(chǎn)\(x\)件產(chǎn)品的利潤函數(shù)\(L(x)\)。

(2)求使得利潤最大化的最優(yōu)生產(chǎn)件數(shù)\(x\)。

(3)根據(jù)市場需求函數(shù),當\(x=100\)時,市場對這批產(chǎn)品的需求量是多少?

2.案例背景:某班級有30名學(xué)生,其中男生人數(shù)為\(x\),女生人數(shù)為\(y\)。已知男生平均身高為\(h_1\),女生平均身高為\(h_2\),班級總平均身高為\(h\)。

案例分析:

(1)根據(jù)班級總平均身高的定義,寫出\(h\)的表達式。

(2)若已知\(h_1=1.75\)米,\(h_2=1.65\)米,\(h=1.70\)米,求班級中男生和女生的人數(shù)\(x\)和\(y\)。

(3)如果班級中男女生人數(shù)的比例是\(1:1\),求班級的總平均身高\(h\)。

七、應(yīng)用題

1.應(yīng)用題:某工廠生產(chǎn)一種產(chǎn)品,其固定成本為每天2000元,每生產(chǎn)一件產(chǎn)品的變動成本為10元。如果每件產(chǎn)品的售價為50元,求工廠每天生產(chǎn)多少件產(chǎn)品才能達到盈虧平衡點?

2.應(yīng)用題:已知某函數(shù)\(f(x)=-2x^2+8x+4\),求函數(shù)\(f(x)\)在區(qū)間\([1,4]\)上的最大值和最小值。

3.應(yīng)用題:一元二次方程\(ax^2+bx+c=0\)的兩個實數(shù)根為\(x_1\)和\(x_2\),且\(x_1+x_2=-\frac{a}\),\(x_1x_2=\frac{c}{a}\)。若方程的判別式\(b^2-4ac\)等于0,求方程的解。

4.應(yīng)用題:一輛汽車以60公里/小時的速度行駛,經(jīng)過一段時間后,速度降低到40公里/小時,行駛了相同的時間。假設(shè)汽車減速的過程是勻減速運動,求汽車減速的平均速度。

本專業(yè)課理論基礎(chǔ)試卷答案及知識點總結(jié)如下:

一、選擇題

1.A

2.A

3.A

4.A

5.A

6.A

7.A

8.A

9.A

10.A

二、判斷題

1.×

2.×

3.√

4.√

5.√

三、填空題

1.\(\sqrt{x^2-4}>0\)

2.\(\lim_{x\to1}f(x)=2\)

3.\(m^2+1\geq\frac{1}{r^2}\)

4.當\(b^2-4ac>0\)時,有兩個不相等的實數(shù)根;當\(b^2-4ac=0\)時,有兩個相等的實數(shù)根;當\(b^2-4ac<0\)時,沒有實數(shù)根。

5.\(f(x_1)-f(x_2)>\frac{x_1-x_2}{x_1x_2}\)

四、簡答題

1.\(f'(x)=3x^2-3\)。

2.\(f'(0)=1\)。

3.證明:直線和圓相交,意味著直線方程和圓的方程有公共解。將直線方程代入圓的方程,得到關(guān)于\(x\)的一元二次方程。根據(jù)判別式\(b^2-4ac\)的值,判斷方程的解的情況,從而得出結(jié)論。

4.當\(b^2-4ac>0\)時,有兩個不相等的實數(shù)根,說明圖像與\(x\)軸有兩個交點;當\(b^2-4ac=0\)時,有一個重根,說明圖像與\(x\)軸有一個切點;當\(b^2-4ac<0\)時,沒有實數(shù)根,說明圖像與\(x\)軸沒有交點。

5.根據(jù)對數(shù)函數(shù)的性質(zhì),\(f(x_1)-f(x_2)=\ln(x_1)-\ln(x_2)=\ln\left(\frac{x_1}{x_2}\right)\)。由于\(x_1>x_2>0\),所以\(\frac{x_1}{x_2}>1\),根據(jù)對數(shù)函數(shù)的單調(diào)性,有\(zhòng)(\ln\left(\frac{x_1}{x_2}\right)>0\)。同時,根據(jù)對數(shù)函數(shù)的拉格朗日中值定理,存在某個\(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論