安徽城市管理職業(yè)學(xué)院《版面設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
安徽城市管理職業(yè)學(xué)院《版面設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
安徽城市管理職業(yè)學(xué)院《版面設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
安徽城市管理職業(yè)學(xué)院《版面設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
安徽城市管理職業(yè)學(xué)院《版面設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁安徽城市管理職業(yè)學(xué)院

《版面設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、當(dāng)利用計算機(jī)視覺進(jìn)行圖像去模糊任務(wù),恢復(fù)清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是2、計算機(jī)視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個擁擠的公共場所中準(zhǔn)確檢測出行人,同時要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復(fù)雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學(xué)習(xí)的行人檢測C.基于運(yùn)動信息的行人檢測D.基于形狀模板的行人檢測3、計算機(jī)視覺中的圖像修復(fù)是填補(bǔ)圖像中的缺失或損壞部分。假設(shè)我們有一張老照片,其中部分區(qū)域被損壞,需要進(jìn)行修復(fù)。以下哪種圖像修復(fù)方法能夠生成自然、合理的內(nèi)容,與周圍區(qū)域融合良好?()A.基于紋理合成的修復(fù)方法B.基于插值和填充的修復(fù)方法C.基于深度學(xué)習(xí)的圖像修復(fù)網(wǎng)絡(luò),如ContextEncoderD.基于圖像分解和重構(gòu)的修復(fù)方法4、在計算機(jī)視覺的實際應(yīng)用中,光照變化會對圖像的處理和分析產(chǎn)生影響。以下關(guān)于光照變化的描述,不正確的是()A.光照變化可能導(dǎo)致圖像的亮度、對比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預(yù)處理技術(shù),如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學(xué)習(xí)模型能夠自動適應(yīng)各種光照變化,無需進(jìn)行額外的處理D.光照變化對于目標(biāo)檢測和跟蹤等任務(wù)的準(zhǔn)確性可能會產(chǎn)生較大的影響5、在計算機(jī)視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復(fù)雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強(qiáng),但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求6、在計算機(jī)視覺的應(yīng)用于自動駕駛領(lǐng)域,需要實時檢測道路上的交通標(biāo)志和標(biāo)線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準(zhǔn)確地檢測到各種交通標(biāo)志,并且對光照變化和遮擋具有較強(qiáng)的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學(xué)習(xí)的檢測方法,結(jié)合多尺度特征C.基于邊緣檢測和形態(tài)學(xué)操作的方法D.基于模板匹配和特征點匹配的方法7、在計算機(jī)視覺領(lǐng)域中,當(dāng)需要對監(jiān)控視頻中的行人進(jìn)行實時檢測和跟蹤,以實現(xiàn)智能安防系統(tǒng)的功能時,以下哪種方法在處理復(fù)雜場景和多目標(biāo)跟蹤方面可能表現(xiàn)更為出色?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測算法C.基于特征匹配的跟蹤算法D.基于光流法的跟蹤算法8、計算機(jī)視覺中的表情識別旨在判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關(guān)于表情特征的提取,哪一項是需要重點關(guān)注的?()A.提取面部肌肉的細(xì)微運(yùn)動作為特征B.僅考慮眼睛和嘴巴的形狀變化C.忽略面部的整體輪廓,只關(guān)注局部特征D.不進(jìn)行任何特征提取,直接使用原始圖像進(jìn)行分類9、當(dāng)利用計算機(jī)視覺進(jìn)行圖像語義分割任務(wù),例如將圖像中的不同物體分割出來,以下哪種深度學(xué)習(xí)架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是10、在計算機(jī)視覺的姿態(tài)估計任務(wù)中,例如估計人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是11、圖像分類是計算機(jī)視覺的常見任務(wù)之一。假設(shè)要對大量的自然風(fēng)景圖片進(jìn)行分類,如山脈、森林、海灘等。在進(jìn)行圖像分類時,以下關(guān)于數(shù)據(jù)增強(qiáng)的方法,哪一項可能不太有效?()A.對圖像進(jìn)行隨機(jī)裁剪和旋轉(zhuǎn),增加數(shù)據(jù)的多樣性B.改變圖像的色彩和對比度,模擬不同的拍攝條件C.直接復(fù)制原圖像,增加數(shù)據(jù)量D.給圖像添加隨機(jī)噪聲,增強(qiáng)模型的魯棒性12、計算機(jī)視覺在虛擬現(xiàn)實(VR)和增強(qiáng)現(xiàn)實(AR)中有重要作用。假設(shè)要在VR環(huán)境中實現(xiàn)真實感的物體交互,以下哪種技術(shù)可能對準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺B.光場成像C.結(jié)構(gòu)光D.運(yùn)動捕捉13、在計算機(jī)視覺的視頻分析中,假設(shè)要對一段監(jiān)控視頻中的異常行為進(jìn)行檢測。以下關(guān)于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運(yùn)動特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時空特征,同時考慮空間和時間維度的信息14、計算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,同時保留圖像的細(xì)節(jié)和結(jié)構(gòu)。假設(shè)我們有一張受到嚴(yán)重噪聲污染的醫(yī)學(xué)圖像,以下哪種圖像去噪方法能夠在去除噪聲的同時,最大程度地保留圖像的邊緣和紋理信息?()A.均值濾波B.中值濾波C.高斯濾波D.基于小波變換的去噪方法15、計算機(jī)視覺中,以下哪個任務(wù)通常需要對圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測C.圖像超分辨率D.圖像去噪16、計算機(jī)視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機(jī)視覺的說法,不正確的是()A.計算機(jī)視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機(jī)視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機(jī)視覺面臨的挑戰(zhàn)17、計算機(jī)視覺中的光流估計用于計算圖像中像素的運(yùn)動信息。假設(shè)我們要分析一個視頻中物體的運(yùn)動速度和方向,以下哪種光流估計算法在復(fù)雜場景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法18、在一個基于計算機(jī)視覺的農(nóng)業(yè)監(jiān)測系統(tǒng)中,需要對農(nóng)作物的生長狀況進(jìn)行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農(nóng)作物監(jiān)測較為有效?()A.顏色空間轉(zhuǎn)換B.形態(tài)學(xué)分析C.紋理分析D.以上都是19、圖像分割是將圖像分成不同的區(qū)域或?qū)ο?。假設(shè)要對醫(yī)學(xué)影像中的腫瘤區(qū)域進(jìn)行精確分割,以下關(guān)于圖像分割方法的描述,正確的是:()A.手動分割是最準(zhǔn)確的方法,不需要借助計算機(jī)算法B.基于閾值的圖像分割方法能夠適用于所有類型的醫(yī)學(xué)影像分割問題C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)及其變體在醫(yī)學(xué)圖像分割中具有很大的潛力D.圖像分割的結(jié)果只取決于所使用的分割算法,與圖像的預(yù)處理無關(guān)20、計算機(jī)視覺在自動駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個能夠識別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對不同光照條件的策略,哪一項是最為有效的?()A.使用固定的閾值對圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)21、在進(jìn)行圖像增強(qiáng)時,我們常常需要在保持圖像細(xì)節(jié)的同時改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強(qiáng)方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波22、計算機(jī)視覺在人臉識別領(lǐng)域取得了顯著進(jìn)展。假設(shè)要開發(fā)一個人臉識別系統(tǒng),以下關(guān)于人臉識別技術(shù)的描述,哪一項是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學(xué)習(xí)特征進(jìn)行識別B.人臉識別系統(tǒng)通常需要進(jìn)行活體檢測,以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學(xué)習(xí)模型的結(jié)合,大大提高了人臉識別的準(zhǔn)確率D.人臉識別技術(shù)在任何光照條件、姿態(tài)變化和表情變化下都能準(zhǔn)確識別,不受這些因素的影響23、當(dāng)進(jìn)行視頻中的動作識別時,假設(shè)要分析一段運(yùn)動員訓(xùn)練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識別這些動作,以下哪種技術(shù)是關(guān)鍵的?()A.對每一幀圖像進(jìn)行獨立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運(yùn)動模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨立的圖像24、在計算機(jī)視覺的三維重建中,從多幅二維圖像恢復(fù)物體的三維結(jié)構(gòu)。假設(shè)要對一個古建筑進(jìn)行三維重建,以下關(guān)于三維重建方法的描述,哪一項是不正確的?()A.基于立體視覺的方法通過匹配不同視角下的圖像特征點來計算深度信息,實現(xiàn)三維重建B.運(yùn)動恢復(fù)結(jié)構(gòu)(SfM)算法可以從一系列無序的圖像中重建場景的三維結(jié)構(gòu)C.激光掃描技術(shù)能夠直接獲取物體表面的三維點云數(shù)據(jù),是一種高精度的三維重建方法D.三維重建的結(jié)果只取決于輸入的圖像質(zhì)量,與重建算法的選擇無關(guān)25、計算機(jī)視覺中的姿態(tài)估計任務(wù)是估計人體或物體在三維空間中的姿態(tài)。假設(shè)要估計一個人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計的描述,哪一項是不正確的?()A.可以通過關(guān)鍵點檢測和關(guān)節(jié)角度計算來估計人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測人體姿態(tài)的參數(shù)C.姿態(tài)估計在虛擬現(xiàn)實和增強(qiáng)現(xiàn)實等應(yīng)用中具有重要作用D.姿態(tài)估計的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動作的影響二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機(jī)視覺在工業(yè)機(jī)器人中的應(yīng)用。2、(本題5分)解釋計算機(jī)視覺中的多模態(tài)數(shù)據(jù)融合在視覺任務(wù)中的應(yīng)用。3、(本題5分)解釋計算機(jī)視覺在殯葬行業(yè)中的應(yīng)用。4、(本題5分)解釋計算機(jī)視覺中的模型剪枝技術(shù)。三、分析題(本大題共5個小題,共25分)1、(本題5分)觀察某運(yùn)動賽事的獎牌和證書設(shè)計,思考如何通過材質(zhì)、形狀和圖案來體現(xiàn)賽事的價值和榮譽(yù),激發(fā)運(yùn)動員的參與熱情。2、(本題5分)以一個公益組織的網(wǎng)站設(shè)計為例,分析其如何運(yùn)用視覺元素傳達(dá)公益理念和吸引志愿者。3、(本題5分)以某品牌的宣傳海報系列主題設(shè)計為例,說明其如何通過不同的主題和創(chuàng)意,傳達(dá)品牌的多元性和創(chuàng)新性,提升品牌的影響力。4、(本題5分)以一個家居品牌的家居軟裝搭配指南設(shè)計為例,分析其視覺效果、搭配方案展示和品

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論