![北京外國(guó)語(yǔ)大學(xué)《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view6/M01/0D/3F/wKhkGWepfaeAJaElAAMNPFdDX3k425.jpg)
![北京外國(guó)語(yǔ)大學(xué)《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view6/M01/0D/3F/wKhkGWepfaeAJaElAAMNPFdDX3k4252.jpg)
![北京外國(guó)語(yǔ)大學(xué)《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view6/M01/0D/3F/wKhkGWepfaeAJaElAAMNPFdDX3k4253.jpg)
![北京外國(guó)語(yǔ)大學(xué)《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view6/M01/0D/3F/wKhkGWepfaeAJaElAAMNPFdDX3k4254.jpg)
![北京外國(guó)語(yǔ)大學(xué)《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view6/M01/0D/3F/wKhkGWepfaeAJaElAAMNPFdDX3k4255.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)北京外國(guó)語(yǔ)大學(xué)
《智能數(shù)據(jù)可視化技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在氣象預(yù)測(cè)中的應(yīng)用可以提高預(yù)測(cè)的準(zhǔn)確性和精細(xì)化程度。假設(shè)要開(kāi)發(fā)一個(gè)能夠預(yù)測(cè)局部地區(qū)短期天氣變化的人工智能模型,需要考慮多種氣象因素的相互作用。以下哪種模型架構(gòu)和訓(xùn)練方法在處理這種復(fù)雜的時(shí)空數(shù)據(jù)方面表現(xiàn)更為出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型結(jié)合使用2、人工智能在醫(yī)療影像診斷中的應(yīng)用越來(lái)越廣泛。假設(shè)利用人工智能輔助醫(yī)生診斷X光片,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.能夠快速檢測(cè)出影像中的異常區(qū)域,提高診斷效率B.可以為醫(yī)生提供量化的分析指標(biāo)和輔助診斷建議C.人工智能的診斷結(jié)果總是準(zhǔn)確無(wú)誤的,醫(yī)生可以完全依賴D.醫(yī)生的專業(yè)知識(shí)和臨床經(jīng)驗(yàn)在結(jié)合人工智能診斷結(jié)果時(shí)仍然非常重要3、假設(shè)在一個(gè)智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來(lái)監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況并預(yù)測(cè)病蟲(chóng)害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時(shí)間序列分析C.氣象數(shù)據(jù)和機(jī)器學(xué)習(xí)模型D.以上都是4、人工智能在智能推薦系統(tǒng)中發(fā)揮著關(guān)鍵作用。假設(shè)一個(gè)電商平臺(tái)要利用人工智能為用戶提供個(gè)性化推薦,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)分析用戶的瀏覽歷史、購(gòu)買行為等數(shù)據(jù),了解用戶的興趣偏好B.利用協(xié)同過(guò)濾算法可以找到與目標(biāo)用戶相似的其他用戶,進(jìn)行推薦C.深度學(xué)習(xí)模型能夠捕捉復(fù)雜的用戶行為模式,提供更精準(zhǔn)的推薦D.智能推薦系統(tǒng)能夠完全滿足用戶的所有需求,不需要用戶進(jìn)一步篩選和選擇5、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個(gè)數(shù)據(jù)中心要通過(guò)人工智能分配計(jì)算資源,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)服務(wù)器負(fù)載和任務(wù)需求,動(dòng)態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強(qiáng)化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無(wú)需人工重新配置D.強(qiáng)化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況6、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶數(shù)據(jù)進(jìn)行聚類分析。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響7、在人工智能的文本分類任務(wù)中,除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)方法也取得了很好的效果。以下關(guān)于文本分類中深度學(xué)習(xí)方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以自動(dòng)學(xué)習(xí)文本的特征表示B.對(duì)于長(zhǎng)文本的處理能力優(yōu)于短文本C.不需要進(jìn)行特征工程D.訓(xùn)練數(shù)據(jù)量越大,效果一定越好8、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種熱門的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個(gè)生成器和一個(gè)判別器組成,它們相互競(jìng)爭(zhēng),共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成9、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場(chǎng)景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過(guò)與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對(duì)于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無(wú)需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過(guò)程中可能會(huì)經(jīng)歷多次失敗,但通過(guò)不斷嘗試最終能夠?qū)W會(huì)行走10、在人工智能的應(yīng)用中,自動(dòng)駕駛是一個(gè)具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動(dòng)駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全、高效的駕駛決策。那么,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù),哪一項(xiàng)是不準(zhǔn)確的?()A.需要依靠多種傳感器獲取環(huán)境信息,如攝像頭、激光雷達(dá)等B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法可以準(zhǔn)確識(shí)別道路上的行人和車輛C.自動(dòng)駕駛系統(tǒng)一旦訓(xùn)練完成,就不需要再進(jìn)行更新和改進(jìn)D.決策算法需要考慮交通規(guī)則、道德倫理等多方面因素11、在人工智能的發(fā)展過(guò)程中,倫理和社會(huì)問(wèn)題日益受到關(guān)注。以下關(guān)于人工智能倫理問(wèn)題的描述,不正確的是()A.人工智能可能導(dǎo)致就業(yè)結(jié)構(gòu)的變化,一些工作可能被自動(dòng)化取代,從而引發(fā)社會(huì)就業(yè)問(wèn)題B.人工智能在決策過(guò)程中可能存在偏見(jiàn)和不公平,例如在信用評(píng)估、招聘等領(lǐng)域C.隨著人工智能技術(shù)的發(fā)展,個(gè)人隱私保護(hù)面臨更大的挑戰(zhàn),因?yàn)榇罅康臄?shù)據(jù)被收集和分析D.人工智能倫理問(wèn)題不重要,技術(shù)的發(fā)展應(yīng)該優(yōu)先于倫理和社會(huì)問(wèn)題的考慮12、在人工智能的自動(dòng)駕駛場(chǎng)景中,車輛需要與周圍的其他車輛和基礎(chǔ)設(shè)施進(jìn)行有效的通信和協(xié)作。假設(shè)要實(shí)現(xiàn)車輛之間的安全、高效的信息交互,以下哪種通信技術(shù)和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車聯(lián)網(wǎng)專用短程通信(DSRC)D.Wi-Fi通信13、在人工智能的模型評(píng)估中,假設(shè)已經(jīng)有了訓(xùn)練集、驗(yàn)證集和測(cè)試集。以下關(guān)于使用這些數(shù)據(jù)集的方法,哪一項(xiàng)是不正確的?()A.在訓(xùn)練集上訓(xùn)練模型,在驗(yàn)證集上調(diào)整超參數(shù),在測(cè)試集上評(píng)估最終模型的性能B.將訓(xùn)練集、驗(yàn)證集和測(cè)試集混合在一起進(jìn)行訓(xùn)練,以增加數(shù)據(jù)量C.只在訓(xùn)練集上訓(xùn)練模型,然后直接在測(cè)試集上評(píng)估性能D.多次使用測(cè)試集來(lái)評(píng)估模型,以確保結(jié)果的可靠性14、在人工智能的自動(dòng)駕駛領(lǐng)域,車輛需要根據(jù)周圍環(huán)境的感知信息做出決策,如加速、減速、轉(zhuǎn)彎等。假設(shè)車輛面臨復(fù)雜的交通場(chǎng)景,包括多個(gè)車輛、行人、交通信號(hào)燈等,為了確保安全和高效的駕駛決策,以下哪種技術(shù)或方法是至關(guān)重要的?()A.基于規(guī)則的決策制定,遵循固定的交通規(guī)則B.深度學(xué)習(xí)模型,自動(dòng)從大量數(shù)據(jù)中學(xué)習(xí)決策模式C.隨機(jī)決策,根據(jù)概率選擇行動(dòng)D.不考慮其他車輛和行人,只關(guān)注自身車輛的狀態(tài)15、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)能夠監(jiān)測(cè)農(nóng)作物病蟲(chóng)害的系統(tǒng),以下關(guān)于數(shù)據(jù)采集的方式,哪一項(xiàng)是最有效的?()A.依靠農(nóng)民的人工觀察和報(bào)告,將信息輸入系統(tǒng)B.使用無(wú)人機(jī)搭載的圖像傳感器,定期拍攝農(nóng)田圖像C.僅在農(nóng)作物出現(xiàn)明顯病蟲(chóng)害癥狀時(shí)進(jìn)行數(shù)據(jù)采集D.隨機(jī)選擇農(nóng)田的部分區(qū)域進(jìn)行數(shù)據(jù)采集,以節(jié)省成本16、在人工智能的圖像生成領(lǐng)域,生成對(duì)抗網(wǎng)絡(luò)(GAN)取得了令人矚目的成果。假設(shè)要生成逼真的藝術(shù)畫(huà)作,同時(shí)具有獨(dú)特的風(fēng)格和創(chuàng)造力。以下哪種改進(jìn)的GAN架構(gòu)或訓(xùn)練方法能夠更好地實(shí)現(xiàn)這一目標(biāo)?()A.條件GANB.循環(huán)GANC.自監(jiān)督GAND.以上方法結(jié)合使用17、人工智能在金融領(lǐng)域的應(yīng)用越來(lái)越廣泛,如風(fēng)險(xiǎn)評(píng)估、投資決策和欺詐檢測(cè)等。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,不準(zhǔn)確的是()A.可以通過(guò)分析大量的金融數(shù)據(jù),更準(zhǔn)確地評(píng)估風(fēng)險(xiǎn)和預(yù)測(cè)市場(chǎng)趨勢(shì)B.能夠?yàn)橥顿Y者提供個(gè)性化的投資建議,優(yōu)化投資組合C.人工智能在金融領(lǐng)域的應(yīng)用完全消除了風(fēng)險(xiǎn)和錯(cuò)誤,保障了金融交易的絕對(duì)安全D.金融機(jī)構(gòu)在采用人工智能技術(shù)時(shí),需要考慮合規(guī)性和監(jiān)管要求18、自然語(yǔ)言處理是人工智能的重要研究方向之一,其目標(biāo)是讓計(jì)算機(jī)理解和生成人類語(yǔ)言。以下關(guān)于自然語(yǔ)言處理的說(shuō)法,錯(cuò)誤的是()A.詞法分析、句法分析和語(yǔ)義理解是自然語(yǔ)言處理中的關(guān)鍵步驟B.機(jī)器翻譯是自然語(yǔ)言處理的重要應(yīng)用之一,但目前的機(jī)器翻譯質(zhì)量已經(jīng)完全達(dá)到了人類翻譯的水平C.文本分類、情感分析和信息抽取等任務(wù)都屬于自然語(yǔ)言處理的范疇D.自然語(yǔ)言處理面臨著詞匯歧義、句法結(jié)構(gòu)復(fù)雜和語(yǔ)義理解困難等諸多挑戰(zhàn)19、假設(shè)在一個(gè)智能工廠的質(zhì)量檢測(cè)環(huán)節(jié),需要利用人工智能技術(shù)自動(dòng)檢測(cè)產(chǎn)品的缺陷,以下哪種圖像分析技術(shù)和模型可能會(huì)被采用?()A.傳統(tǒng)的圖像處理算法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)C.基于特征工程的分類模型D.以上都是20、在人工智能的應(yīng)用中,智能推薦系統(tǒng)越來(lái)越普及。假設(shè)一個(gè)電商平臺(tái)要為用戶提供個(gè)性化的商品推薦,需要綜合考慮用戶的歷史購(gòu)買行為、瀏覽記錄和商品的屬性等多方面信息。以下哪種算法或模型在處理這種多源異構(gòu)數(shù)據(jù)的推薦任務(wù)上表現(xiàn)更為出色?()A.協(xié)同過(guò)濾算法B.基于內(nèi)容的推薦算法C.混合推薦算法D.關(guān)聯(lián)規(guī)則挖掘21、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率22、在自然語(yǔ)言處理領(lǐng)域,情感分析是一項(xiàng)重要的任務(wù)。假設(shè)要分析大量的在線商品評(píng)論,以確定消費(fèi)者對(duì)產(chǎn)品的態(tài)度是積極、消極還是中性。在進(jìn)行情感分析時(shí),以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過(guò)查找預(yù)定義的情感詞來(lái)判斷情感傾向B.利用深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動(dòng)學(xué)習(xí)語(yǔ)言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動(dòng)化的技術(shù)D.結(jié)合詞向量和機(jī)器學(xué)習(xí)分類算法,如支持向量機(jī)(SVM)23、在人工智能的模型訓(xùn)練中,過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測(cè)試集上性能很差。為了緩解過(guò)擬合,以下哪種方法是有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少模型的復(fù)雜度C.應(yīng)用正則化技術(shù),如L1和L2正則化D.以上都是24、在人工智能的圖像分割任務(wù)中,假設(shè)要將一幅圖像中的不同物體準(zhǔn)確地分割出來(lái),以下關(guān)于圖像分割方法的描述,正確的是:()A.基于閾值的圖像分割方法簡(jiǎn)單快速,但對(duì)復(fù)雜圖像的效果不佳B.基于區(qū)域的圖像分割方法能夠處理具有相似特征的區(qū)域,但容易出現(xiàn)過(guò)度分割C.基于邊緣檢測(cè)的圖像分割方法能夠準(zhǔn)確地找到物體的邊緣,但對(duì)噪聲敏感D.以上圖像分割方法各有優(yōu)缺點(diǎn),常常結(jié)合使用以提高分割效果25、人工智能在氣象預(yù)測(cè)中的應(yīng)用具有挑戰(zhàn)性。假設(shè)要利用人工智能模型預(yù)測(cè)未來(lái)幾天的天氣情況,以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最重要的?()A.對(duì)氣象數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,使其具有相同的量綱B.去除異常值和缺失值,保證數(shù)據(jù)的質(zhì)量C.對(duì)數(shù)據(jù)進(jìn)行降維處理,減少計(jì)算量D.隨機(jī)打亂數(shù)據(jù)的順序,增加數(shù)據(jù)的隨機(jī)性26、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境進(jìn)行交互并根據(jù)獎(jiǎng)勵(lì)來(lái)學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人要在一個(gè)復(fù)雜的迷宮環(huán)境中找到出口,每次到達(dá)出口會(huì)獲得高獎(jiǎng)勵(lì),碰到墻壁會(huì)獲得低獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合訓(xùn)練機(jī)器人找到最優(yōu)路徑?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)動(dòng)作值來(lái)選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行學(xué)習(xí)C.策略梯度算法,直接優(yōu)化策略D.蒙特卡羅方法,通過(guò)多次試驗(yàn)估計(jì)價(jià)值27、在人工智能的語(yǔ)音合成任務(wù)中,要生成自然流暢且富有情感的語(yǔ)音。假設(shè)需要模擬不同人的聲音特點(diǎn)和情感表達(dá),以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語(yǔ)音合成模型,學(xué)習(xí)語(yǔ)音特征B.使用固定的語(yǔ)音模板,進(jìn)行簡(jiǎn)單組合C.隨機(jī)生成語(yǔ)音的音調(diào)和語(yǔ)速D.不考慮情感因素,只生成清晰的語(yǔ)音28、在人工智能的圖像識(shí)別任務(wù)中,對(duì)抗樣本的存在對(duì)模型的安全性構(gòu)成威脅。假設(shè)一個(gè)圖像識(shí)別模型容易受到對(duì)抗樣本的攻擊,導(dǎo)致錯(cuò)誤的分類結(jié)果。以下哪種方法在提高模型對(duì)對(duì)抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對(duì)抗訓(xùn)練D.以上方法綜合運(yùn)用29、在人工智能的情感計(jì)算領(lǐng)域,除了文本和語(yǔ)音,面部表情的分析也具有重要意義。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)分析人類面部表情來(lái)推斷情感狀態(tài)的系統(tǒng),以下哪種方法在準(zhǔn)確性和實(shí)時(shí)性方面面臨更大的挑戰(zhàn)?()A.基于傳統(tǒng)計(jì)算機(jī)視覺(jué)的方法B.基于深度學(xué)習(xí)的方法C.基于傳感器的方法D.以上方法難度相當(dāng)30、在人工智能的藝術(shù)創(chuàng)作評(píng)價(jià)中,例如評(píng)價(jià)一幅由人工智能生成的繪畫(huà)作品,以下哪種標(biāo)準(zhǔn)和方法可能是具有挑戰(zhàn)性的?()A.創(chuàng)新性和獨(dú)特性B.技術(shù)技巧和表現(xiàn)力C.情感傳達(dá)和審美價(jià)值D.以上都是二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的PyTorch框架,構(gòu)建一
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鄉(xiāng)下土地承包合同(2篇)
- 2025年個(gè)人間借款合同(2篇)
- 2025年代理服裝合同(2篇)
- 專題01 利用導(dǎo)函數(shù)研究函數(shù)的切線問(wèn)題(典型題型歸類訓(xùn)練) 解析版
- 2025年產(chǎn)業(yè)基金戰(zhàn)略合作協(xié)議范文(2篇)
- 2025年五年級(jí)數(shù)學(xué)老師工作總結(jié)模版(二篇)
- 2025年二手車轉(zhuǎn)讓協(xié)議不過(guò)戶(2篇)
- 2025年臨時(shí)工安全生產(chǎn)協(xié)議(三篇)
- 快遞驛站裝修合同協(xié)議書(shū)
- 兒童樂(lè)園石膏吊頂裝修協(xié)議
- TCL任職資格體系資料HR
- 《中國(guó)古代寓言》導(dǎo)讀(課件)2023-2024學(xué)年統(tǒng)編版語(yǔ)文三年級(jí)下冊(cè)
- 五年級(jí)上冊(cè)計(jì)算題大全1000題帶答案
- 工會(huì)工作制度匯編
- 工程建設(shè)行業(yè)標(biāo)準(zhǔn)內(nèi)置保溫現(xiàn)澆混凝土復(fù)合剪力墻技術(shù)規(guī)程
- 液壓動(dòng)力元件-柱塞泵課件講解
- 人教版五年級(jí)上冊(cè)數(shù)學(xué)脫式計(jì)算100題及答案
- 屋面細(xì)石混凝土保護(hù)層施工方案及方法
- 2024年1月山西省高三年級(jí)適應(yīng)性調(diào)研測(cè)試(一模)理科綜合試卷(含答案)
- 2024年廣東高考(新課標(biāo)I卷)語(yǔ)文試題及參考答案
- XX衛(wèi)生院關(guān)于落實(shí)國(guó)家組織藥品集中采購(gòu)使用檢測(cè)和應(yīng)急預(yù)案及培訓(xùn)記錄
評(píng)論
0/150
提交評(píng)論