江西藝術(shù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
江西藝術(shù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
江西藝術(shù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
江西藝術(shù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
江西藝術(shù)職業(yè)學(xué)院《機(jī)器學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁江西藝術(shù)職業(yè)學(xué)院

《機(jī)器學(xué)習(xí)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、機(jī)器學(xué)習(xí)中的算法選擇需要考慮多個因素。以下關(guān)于算法選擇的說法中,錯誤的是:算法選擇需要考慮數(shù)據(jù)的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關(guān)于算法選擇的說法錯誤的是()A.對于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務(wù),優(yōu)先選擇計算速度快的算法D.對于不平衡數(shù)據(jù)集,優(yōu)先選擇對不平衡數(shù)據(jù)敏感的算法2、在一個信用評估的問題中,需要根據(jù)個人的信用記錄、收入、債務(wù)等信息評估其信用風(fēng)險。以下哪種模型評估指標(biāo)可能是最重要的?()A.準(zhǔn)確率(Accuracy),衡量正確分類的比例,但在不平衡數(shù)據(jù)集中可能不準(zhǔn)確B.召回率(Recall),關(guān)注正例的識別能力,但可能導(dǎo)致誤判增加C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率,但對不同類別的權(quán)重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評估模型在不同閾值下的性能,對不平衡數(shù)據(jù)較穩(wěn)健3、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎勵或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計狀態(tài)-動作值來選擇最優(yōu)動作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動作就能找到最優(yōu)策略4、想象一個市場營銷的項目,需要根據(jù)客戶的購買歷史、瀏覽行為和人口統(tǒng)計信息來預(yù)測其未來的購買傾向。同時,要能夠解釋模型的決策依據(jù)以指導(dǎo)營銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過系數(shù)分析解釋變量的影響,但對于復(fù)雜的非線性關(guān)系可能不敏感B.運用決策樹集成算法,如梯度提升樹(GradientBoostingTree),準(zhǔn)確性較高,且可以通過特征重要性評估解釋模型,但局部解釋性相對較弱C.采用深度學(xué)習(xí)中的多層卷積神經(jīng)網(wǎng)絡(luò),預(yù)測能力強(qiáng),但幾乎無法提供直觀的解釋D.構(gòu)建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無法處理復(fù)雜的數(shù)據(jù)模式和不確定性5、在構(gòu)建一個機(jī)器學(xué)習(xí)模型時,如果數(shù)據(jù)中存在噪聲,以下哪種方法可以幫助減少噪聲的影響()A.增加正則化項B.減少訓(xùn)練輪數(shù)C.增加模型的復(fù)雜度D.以上方法都不行6、在一個情感分析任務(wù)中,需要同時考慮文本的語義和語法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長處理序列數(shù)據(jù),但長期依賴問題較嚴(yán)重C.長短時記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長期記憶能力,但計算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢7、考慮一個回歸問題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測值與真實值之間的MSE較大,這意味著什么()A.模型的預(yù)測非常準(zhǔn)確B.模型存在過擬合C.模型存在欠擬合D.無法確定模型的性能8、某研究需要對音頻信號進(jìn)行分類,例如區(qū)分不同的音樂風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時域特征C.時頻特征D.以上特征都常用9、在一個圖像分類任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌??()A.過擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)10、在監(jiān)督學(xué)習(xí)中,常見的算法有線性回歸、邏輯回歸、支持向量機(jī)等。以下關(guān)于監(jiān)督學(xué)習(xí)算法的說法中,錯誤的是:線性回歸用于預(yù)測連續(xù)值,邏輯回歸用于分類任務(wù)。支持向量機(jī)通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學(xué)習(xí)算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機(jī)在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學(xué)習(xí)算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無關(guān)11、在一個監(jiān)督學(xué)習(xí)問題中,我們需要評估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)12、在自然語言處理任務(wù)中,如文本分類,詞向量表示是基礎(chǔ)。常見的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時考慮到計算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項是不準(zhǔn)確的?()A.Word2Vec可以通過CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計信息,能夠捕捉更全局的語義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)13、在分類問題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評價指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差14、在一個無監(jiān)督學(xué)習(xí)問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結(jié)構(gòu)。如果數(shù)據(jù)具有層次結(jié)構(gòu),以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對抗網(wǎng)絡(luò)(GAN)C.層次聚類D.以上方法都可以15、某研究團(tuán)隊正在開發(fā)一個用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對疾病進(jìn)行預(yù)測。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢?()A.深度學(xué)習(xí)模型B.決策樹C.集成學(xué)習(xí)模型D.強(qiáng)化學(xué)習(xí)模型16、在機(jī)器學(xué)習(xí)中,特征選擇是一項重要的任務(wù),旨在從眾多的原始特征中選擇出對模型性能有顯著影響的特征。假設(shè)我們有一個包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時,以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識和經(jīng)驗,手動選擇特征17、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來預(yù)測股票價格的走勢。以下哪種數(shù)據(jù)特征可能對預(yù)測結(jié)果幫助較小()A.公司的財務(wù)報表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)18、在一個圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測,以下哪種輕量級模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG19、在處理文本分類任務(wù)時,除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)模型也表現(xiàn)出色。假設(shè)我們要對新聞文章進(jìn)行分類。以下關(guān)于文本分類模型的描述,哪一項是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長短期記憶網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長文本時性能優(yōu)于RNN和CNN,但其計算復(fù)雜度較高D.深度學(xué)習(xí)模型在文本分類任務(wù)中總是比傳統(tǒng)機(jī)器學(xué)習(xí)算法(如樸素貝葉斯、支持向量機(jī))效果好20、假設(shè)要對大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計算復(fù)雜度較高21、在一個工業(yè)生產(chǎn)的質(zhì)量控制場景中,需要通過機(jī)器學(xué)習(xí)來實時監(jiān)測產(chǎn)品的質(zhì)量參數(shù),及時發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動態(tài)變化和噪聲等特點。以下哪種監(jiān)測和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對異常的敏感度可能較低B.采用孤立森林算法,專門用于檢測異常數(shù)據(jù)點,但對于高維數(shù)據(jù)效果可能不穩(wěn)定C.運用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類和可視化,但實時性可能不足D.利用基于深度學(xué)習(xí)的自動編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對異常數(shù)據(jù)有較好的檢測能力,但訓(xùn)練和計算成本較高22、某研究團(tuán)隊正在開發(fā)一個用于醫(yī)療圖像診斷的機(jī)器學(xué)習(xí)模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強(qiáng)的強(qiáng)度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機(jī)制D.以上方法都可以23、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時,以下關(guān)于策略優(yōu)化方法的描述,哪一項是不正確的?()A.策略梯度方法通過直接計算策略的梯度來更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點進(jìn)行選擇24、在構(gòu)建一個用于圖像識別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時,需要考慮許多因素。假設(shè)我們正在設(shè)計一個用于識別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計的描述,哪一項是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計算復(fù)雜度,同時保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力25、在一個異常檢測的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點。以下哪種異常檢測算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點,但對參數(shù)敏感B.一類支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類的異常檢測,將遠(yuǎn)離聚類中心的點視為異常,但聚類效果對結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點選擇合適的方法或進(jìn)行組合26、考慮一個時間序列預(yù)測問題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動平均(SARIMA)模型D.以上都可以27、在使用梯度下降算法優(yōu)化模型參數(shù)時,如果學(xué)習(xí)率設(shè)置過大,可能會導(dǎo)致以下哪種情況()A.收斂速度加快B.陷入局部最優(yōu)解C.模型無法收斂D.以上情況都不會發(fā)生28、假設(shè)正在開發(fā)一個自動駕駛系統(tǒng),其中一個關(guān)鍵任務(wù)是目標(biāo)檢測,例如識別道路上的行人、車輛和障礙物。在選擇目標(biāo)檢測算法時,需要考慮算法的準(zhǔn)確性、實時性和對不同環(huán)境的適應(yīng)性。以下哪種目標(biāo)檢測算法在實時性要求較高的場景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測精度B.YOLO(YouOnlyLookOnce),能夠?qū)崿F(xiàn)快速檢測C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實時應(yīng)用29、無監(jiān)督學(xué)習(xí)算法主要包括聚類和降維等方法。以下關(guān)于無監(jiān)督學(xué)習(xí)算法的說法中,錯誤的是:聚類算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無監(jiān)督學(xué)習(xí)算法的說法錯誤的是()A.K均值聚類算法需要預(yù)先指定聚類的個數(shù)K,并且對初始值比較敏感B.層次聚類算法可以生成樹形結(jié)構(gòu)的聚類結(jié)果,便于直觀理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無監(jiān)督學(xué)習(xí)算法不需要任何先驗知識,完全由數(shù)據(jù)本身驅(qū)動30、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問題。以下關(guān)于欠擬合的說法中,錯誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過于簡單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說法錯誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問題C.欠擬合問題比過擬合問題更

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論