2024-2025學(xué)年高中數(shù)學(xué)第一章數(shù)列3.1等比數(shù)列第2課時(shí)等比數(shù)列的性質(zhì)鞏固提升訓(xùn)練含解析北師大版必修5_第1頁
2024-2025學(xué)年高中數(shù)學(xué)第一章數(shù)列3.1等比數(shù)列第2課時(shí)等比數(shù)列的性質(zhì)鞏固提升訓(xùn)練含解析北師大版必修5_第2頁
2024-2025學(xué)年高中數(shù)學(xué)第一章數(shù)列3.1等比數(shù)列第2課時(shí)等比數(shù)列的性質(zhì)鞏固提升訓(xùn)練含解析北師大版必修5_第3頁
2024-2025學(xué)年高中數(shù)學(xué)第一章數(shù)列3.1等比數(shù)列第2課時(shí)等比數(shù)列的性質(zhì)鞏固提升訓(xùn)練含解析北師大版必修5_第4頁
2024-2025學(xué)年高中數(shù)學(xué)第一章數(shù)列3.1等比數(shù)列第2課時(shí)等比數(shù)列的性質(zhì)鞏固提升訓(xùn)練含解析北師大版必修5_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PAGEPAGE1第2課時(shí)等比數(shù)列的性質(zhì)[A基礎(chǔ)達(dá)標(biāo)]1.等比數(shù)列{an}的公比q=-eq\f(1,4),a1=eq\r(2),則數(shù)列{an}是()A.遞增數(shù)列 B.遞減數(shù)列C.常數(shù)列 D.搖擺數(shù)列解析:選D.由于公比q=-eq\f(1,4)<0,所以數(shù)列{an}是搖擺數(shù)列.2.等比數(shù)列{an}中,a2=4,a7=eq\f(1,16),則a3a6+a4a5的值是()A.1 B.2C.eq\f(1,2) D.eq\f(1,4)解析:選C.a3a6=a4a5=a2a7=4×eq\f(1,16)=eq\f(1,4),所以a3a6+a4a5=eq\f(1,2).3.在等比數(shù)列{an}中,已知a7·a12=5,則a8·a9·a10·a11等于()A.10 B.25C.50 D.75解析:選B.法一:因?yàn)閍7·a12=a8·a11=a9·a10=5,所以a8·a9·a10·a11=52=25.法二:由已知得a1q6·a1q11=aeq\o\al(2,1)q17=5,所以a8·a9·a10·a11=a1q7·a1q8·a1q9·a1q10=aeq\o\al(4,1)·q34=(aeq\o\al(2,1)q17)2=25.4.計(jì)算機(jī)的價(jià)格不斷降低,若每件計(jì)算機(jī)的價(jià)格每年降低eq\f(1,3),現(xiàn)在價(jià)格為8100元的計(jì)算機(jī)3年后的價(jià)格可降低為()A.300元 B.900元C.2400元 D.3600元解析:選C.降低后的價(jià)格構(gòu)成以eq\f(2,3)為公比的等比數(shù)列.則現(xiàn)在價(jià)格為8100元的計(jì)算機(jī)3年后的價(jià)格可降低為8100×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))eq\s\up12(3)=2400(元).5.已知等比數(shù)列{an}中,a3a11=4a7,數(shù)列{bn}是等差數(shù)列,且b7=a7,則b5+b9等于()A.2 B.4C.8 D.16解析:選C.等比數(shù)列{an}中,a3a11=aeq\o\al(2,7)=4a7,解得a7=4,等差數(shù)列{bn}中,b5+b9=2b7=2a7=8.6.在等比數(shù)列{an}中,各項(xiàng)均為正數(shù),且a6a10+a3a5=41,a4a8=5,則a4+a8=________.解析:因?yàn)閍6a10=aeq\o\al(2,8),a3a5=aeq\o\al(2,4),所以aeq\o\al(2,8)+aeq\o\al(2,4)=41.又因?yàn)閍4a8=5,an>0,所以a4+a8=eq\r((a4+a8)2)=eq\r(aeq\o\al(2,4)+2a4a8+aeq\o\al(2,8))=eq\r(51).答案:eq\r(51)7.在3和一個(gè)未知數(shù)間填上一個(gè)數(shù),使三數(shù)成等差數(shù)列,若中間項(xiàng)減去6,則成等比數(shù)列,則此未知數(shù)是________.解析:設(shè)此三數(shù)為3,a,b,則eq\b\lc\{(\a\vs4\al\co1(2a=3+b,,(a-6)2=3b,))解得eq\b\lc\{(\a\vs4\al\co1(a=3,b=3))或eq\b\lc\{(\a\vs4\al\co1(a=15,,b=27.))所以這個(gè)未知數(shù)為3或27.答案:3或278.設(shè)x,y,z是實(shí)數(shù),9x,12y,15z成等比數(shù)列.且eq\f(1,x),eq\f(1,y),eq\f(1,z)成等差數(shù)列,則eq\f(x,z)+eq\f(z,x)的值是________.解析:由題意可得eq\b\lc\{(\a\vs4\al\co1((12y)2=9x×15z,,\f(2,y)=\f(1,x)+\f(1,z),))所以y=eq\f(2xz,x+z),所以eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(24xz,x+z)))eq\s\up12(2)=135xz,化簡得15x2+15z2=34xz,兩邊同時(shí)除以15xz可得eq\f(x,z)+eq\f(z,x)=eq\f(34,15).答案:eq\f(34,15)9.三個(gè)互不相等的數(shù)成等差數(shù)列,假如適當(dāng)排列這三個(gè)數(shù),又可成為等比數(shù)列,這三個(gè)數(shù)和為6,求這三個(gè)數(shù).解:由已知,可設(shè)這三個(gè)數(shù)為a-d,a,a+d,則a-d+a+a+d=6,所以a=2,這三個(gè)數(shù)可表示為2-d,2,2+d,①若2-d為等比中項(xiàng),則有(2-d)2=2(2+d),解之得d=6,或d=0(舍去).此時(shí)三個(gè)數(shù)為-4,2,8.②若2+d是等比中項(xiàng),則有(2+d)2=2(2-d),解之得d=-6,或d=0(舍去).此時(shí)三個(gè)數(shù)為8,2,-4.③若2為等比中項(xiàng),則22=(2+d)·(2-d),所以d=0(舍去).綜上可求得此三數(shù)為-4,2,8.10.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,aeq\o\al(2,3)=9a2a6.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,bn)))(n≥2,n∈N+)的前n項(xiàng)和.解:(1)設(shè)等比數(shù)列{an}的公比為q,因?yàn)閍eq\o\al(2,3)=9a2a6=9aeq\o\al(2,4),所以q2=eq\f(aeq\o\al(2,4),aeq\o\al(2,3))=eq\f(1,9),因?yàn)閍n>0,所以q>0,所以q=eq\f(1,3),因?yàn)?a1+3a2=2a1+3a1q=1,所以3a1=1,a1=eq\f(1,3),所以an=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(n).(2)bn=log3a1+log3a2+…+log3an=log3(a1·a2·…·an)=log3eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(1+2+3+…+n)=-eq\f(n(n+1),2).設(shè)數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,bn)))的前n項(xiàng)和為Sn,則Sn=-2eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,1×2)+\f(1,2×3)+…+\f(1,n(n+1))))=-2eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)+\f(1,2)-\f(1,3)+…+\f(1,n)-\f(1,n+1)))=-2eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,n+1)))=-eq\f(2n,n+1).[B實(shí)力提升]11.?dāng)?shù)列{an}的首項(xiàng)為1,數(shù)列{bn}為等比數(shù)列且bn=eq\f(an+1,an),若b10·b11=2,則a21=()A.20 B.512C.1013 D.1024解析:選D.因?yàn)閎n=eq\f(an+1,an),且b10·b11=2,又{bn}是等比數(shù)列,所以b1·b20=b2·b19=…=b10·b11=2,則eq\f(a2,a1)·eq\f(a3,a2)·eq\f(a4,a3)…eq\f(a21,a20)=b1b2b3…b20=210,即eq\f(a21,a1)=1024,從而a21=1024a1=1024.12.在等比數(shù)列{an}中,若a7+a8+a9+a10=eq\f(15,8),a8a9=-eq\f(9,8),則eq\f(1,a7)+eq\f(1,a8)+eq\f(1,a9)+eq\f(1,a10)=________.解析:因?yàn)閑q\f(1,a7)+eq\f(1,a10)=eq\f(a7+a10,a7a10),eq\f(1,a8)+eq\f(1,a9)=eq\f(a8+a9,a8a9),又a8a9=a7a10,所以eq\f(1,a7)+eq\f(1,a8)+eq\f(1,a9)+eq\f(1,a10)=eq\f(a7+a8+a9+a10,a8a9)=eq\f(\f(15,8),-\f(9,8))=-eq\f(5,3).答案:-eq\f(5,3)13.如圖所示,在邊長為1的等邊三角形A1B1C1中,連接各邊中點(diǎn)得△A2B2C2,再連接△A2B2C2的各邊中點(diǎn)得△A3B3C3,…,如此接著下去,試證明數(shù)列S△A1B1C1,S△A2B2C2,S△A3B3C3,…是等比數(shù)列.證明:由題意,得△AnBnCn(n=1,2,3…)的邊長AnBn構(gòu)成首項(xiàng)為1,公比為eq\f(1,2)的等比數(shù)列,故AnBn=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(n-1),所以S△AnBnCn=eq\f(\r(3),4)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up12(2n-2),所以eq\f(S△An+1Bn+1Cn+1,S△AnBnCn)=eq\f(\f(\r(3),4)\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))\s\up12(2n),\f(\r(3),4)\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))\s\up12(2n-2))=eq\f(1,4).因此,數(shù)列S△A1B1C1,S△A2B2C2,S△A3B3C3,…是等比數(shù)列.14.(選做題)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=55,S20=210.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=eq\f(an,an+1),是否存在m,k(k>m≥2,m,k∈N+)使得b1,bm,bk成等比數(shù)列?若存在,求出全部符合條件的m,k的值;若不存在,請說明理由.解:(1)設(shè)等差數(shù)列{an}的公差為d,則Sn=na1+eq\f(n(n-1),2)d.由已知,得eq\b\lc\{(\a\vs4\al\co1(10a1+\f(10×9,2)d=55,,20a1+\f(20×19,2)d=210,))即eq\b\lc\{(\a\vs4\al\co1(2a1+9d=11,,2a1+19d=21,))解得eq\b\lc\{(\a\vs4\al\co1(a1=1,,d=1.))所以an=a1+(n-1)d=n(n∈N+).(2)假設(shè)存在m,k(k>m≥2,m,k∈N+)使得b1,bm,bk成等比數(shù)列.則beq\o\al(2,m)=b1bk.因?yàn)閎n=eq\f(an,an+1)=eq\f(n,n+1),所以b1=eq\f(1,2),bm=eq\f(m,m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論