




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter2
The
Solution
of
Least
Squares
Problems2.1Linear
Least
Squares
Estimatio2.2AGeneralized“Pseudo-Inverse”
Approachto
Solvingthe
Least-squaresProblem2.1.1Example:AutoregressiveModelling
Anautoregressive(AR)processisarandomprocesswhichistheoutputofanallpole-filterwhenexcitedbywhitenoise.Thereasonforthisterminologyismadeapparentlater.Inthisexample,wedealindiscretetime.Anall-polefilterhasatransferfunctionH(z)givenbytheexpression
2.1LinearLeastSquaresEstimation
where
ziare
the
poles
of
the
filter
and
hiare
the
coefficients
of
the
correspondingpolynomial
in
z.
Let
W(z)
and
Y(z)
denote
the
z-transforms
of
the
input
and
outputsequences,
respectively.
If
W(z)=σ2(corresponding
to
a
white
noise
input)
then
or
for
this
specific
case,
Thusequation(2.1.2)maybeexpressedas
Wenowwishtotransformthisexpressionintothetimedomain.Eachofthetime-domainsignalsofequation(2.1.3)aregivenbythecorrespondinginversez-transformrelationshipas
and
the
input
sequence
corresponding
to
the
z-transform
quantity
σ2
is
where
wn
is
a
white
noise
sequence
with
power
σ2.The
left-hand
side
of
equation(2.1.3)
isthe
product
of
z-transforms.
Thus,the
time-domain
representation
of
the
left-han
dside
ofequation
(2.1.3)
is
the
convolution
of
the
respective
time-domain
representations.
Thususing
equation(2.1.3)
to
(2.1.6)we
have
or
Repeatingthisequationformdifferentvaluesoftheindexiwehave
Soagain,itmakessensetochoosetheh’sinequation(2.1.5)sothatthepredictingtermYhisascloseaspossibletoypinthe2-normsense.Hence,asbefore,wechoosehtosatisfy
Noticethatiftheparametershareknowntheautoregressiveprocessiscompletelycharacterized.
2.1.2The
Least-Squares
Solution
We
define
our
regression
model
corresponding
to
equation(2.1.11)
as
and
we
wish
to
determine
the
value
xLS
which
solves
where
A∈Rm×n,m>n,b∈Rm.The
matrix
A
is
assumedf
ull
rank.
WenowdiscussafewrelevantpointsconcerningtheLSproblem:
·Thesystemequation(2.1.12)isoverdeterminedandhencenosolutionexistsinthegeneralcaseforwhichAx=bexactly.
·Ofallcommonlyusedvaluesofpforthenorm‖·‖pinequation(2.1.12),p=2istheonlyoneforwhichthenormisdifferentiableforallvaluesofx.Thus,foranyothervalueofp,theoptimalsolutioninnotobtainablebydifferentiation.
·NotethatforQorthonormal,wehave(onlyforp=2)
Thisfactisusedtoadvantagelateron.
·Wedefinetheminimumsumofsquaresoftheresidual‖AxLS-b‖22asρ2LS.
·Ifr=rank(A)<n,thenthereisnouniquexLSwhichminimizes‖Ax-b‖2.However,thesolutioncanbemadeuniquebyconsideringonlythatelementofset{xLS∈Rn|‖AxLS-b‖2=min}whichhasminimumnorm.
2.1.3Interpretation
of
the
Normal
Equations
Equation(2.1.23)
can
be
written
in
the
form
or
where
is
the
leastsquares
error
vector
between
AxLS
and
b,
rLSmust
be
orthogonal
to
R(A)
forthe
LS
solution
xLS.Hence,
the
name“normal
equations”.This
fact
gives
an
importantinterpretation
to
least-square
sestimation,
whichwe
now
illustrate
for
the
3×2case.
Equation
(2.1.11)
may
be
expressed
as
Thisinterpretationmaybeaugmentedasfollows.Fromweseethat
HencethepointAxLSwhichisinR(A)isgivenby
WherePistheprojectorontoR(A).Thus,weseefromanotherpointofviewthattheleast-squaressolutionistheresultofprojectingb(theobservation)ontoR(A).
Thereisafurtherpointwewishtoaddressintheinterpretationofthenormalequations.Substitutingequation(2.1.26)into(2.1.25)wehave
Thus,rLSistheprojectionofbontoR(A)⊥.Wecannowdeterminethevalueρ2LS,whichisthesquared2-normoftheLSresidual:
2.1.4Properties
of
the
LS
Estimate
Here
we
consider
the
regression
equation(2.1.11)
again.
It
is
reproduced
below
forconvenience.
InordertodiscussusefulandinterestingpropertiesoftheLSestimatewemakethefollowingassumptions:
A1:
nisazeromeanrandomvectorwithuncorrelatedelements;i.e.,E(nnT)=σ2I.
A2:Aisaconstantmatrixwhichisknownwithnegligibleerror.Thatis,thereisnouncertaintyinA.
UnderA1andA2,wehavethefollowingpropertiesoftheLSestimategivenbyequation(2.1.26).
XLS
is
an
Unbiased
Estimate
of
X0
the
True
Value
To
show
this,we
have
from
equation
(2.1.26)
Butfromtheregressionequation(2.1.29),werealizethattheobserveddata
baregeneratedfromthetruevaluesx0ofx.Hencefromequation(2.1.29)
ThereforetheE(x)isgivenas
whichfollowsbecauseniszeromeanfromassumptionA1.ThereforetheexpectationofxisitstruevalueandxLSisunbiased.
CovarianceMatrixofxLS
Thedefinitionofthecovariancematrixcov(xLS)ofthenon-zeromeanprocessxLSis:
ForthesepurposeswedefineE(xLS)as
Substitutingequation(2.1.34)and(2.1.26)in(2.1.33),wehave
FromassumptionA2wecanmovetheexpectationoperatorinside.Therefore,
xLSisaBLUE
Accordingtoequation(2.1.26),weseethatxLSisalinearestimatesinceitisalineartransformationofb,wherethetransformationmatrixis(ATA)-1AT.FurtherfromSectionweseethatxLSisunbiased.Withthefollowingtheorem,weshowthatxLSisthebestlinearunbiasedestimator(BLUE).
ProbabilityDensityFunctionofxLS
ItisafundamentalpropertyofGaussian-distributedrandomvariablesthatanylineartransformationofaGaussiandistributedquantityisalsoGaussian.Fromequation(2.1.26)weseethatxLSisalineartransformationofb,whichisGaussianbyhypothesis.SincetheGaussianpdfiscompletelyspecifiedfromtheexpectationandcovariance,givenrespectivelybyequation(2.1.32)and(2.1.36),thenxLShastheGaussianpdfgivenby
WeseethattheellipticaljointconfidenceregionofxLSisthesetofpointsψdefinedas
where
k
is
some
constant
which
determines
the
probability
level
that
an
observation
willfall
within
ψ.
Note
that
if
the
joint
confidence
region
becomes
elongated
in
any
direction,then
the
variance
of
the
associated
components
of
xLSbecome
large.
Let
us
rewrite
thequadratic
form
in
equation(2.1.44)
as
Theorem2
TheleastsquaresestimatexLSwillhavelargevariancesifatleastoneoftheeigenvaluesofATAissmallwheretheassociatedeigenvectorshavesignificantcomponentsalongthex-axes.
Maximum-LikelihoodProperty
Inthisvein,theleast-squaresestimatexLSisthemaximumlikelihoodestimateofx0.Toshowthisproperty,wefirstinvestigatetheprobabilitydensityfunctionofn=Ax-b,givenforthemoregeneralcasewherecov(n)=Σ:
2.1.5Linear
Least-Squares
Estimation
and
the
Cramer
Rao
Lower
Bound
In
this
sectionwe
discuss
the
relationship
between
the
cramer
rao
lower
bound(CRLB)
and
the
linear
least-squares
estimate.
We
first
discussthe
CRLB
itself,
and
thengo
onto
discuss
the
relationship
between
the
CRLB
and
linear
leastsquares
estimation
inwhite
and
coloured
noise.
The
Crame
rRao
Lower
Bound
Here
we
assume
that
the
observed
data
b
is
generated
from
the
model(2.1.29),forthe
specific
case
when
the
noise
n
is
a
joint
Gaussian
zero
mean
process.In
order
to
addressthe
CRLB,
we
consider
a
matrix
J
defined
by
Inourcase,Jisdefinedasamatrixofsecondderivativesrelatedtoequation(2.1.45).Theconstanttermsprecedingtheexponentinarenotfunctionsofx,andsoarenotrelevantwithregardtothedifferentiation.Thusweneedtoconsideronlytheexponentialtermofequation(2.1.45).Becauseoftheln(·)operationreducestothesecondderivativematrixofthequadraticformintheexponent.ThissecondderivativematrixisreferredtoastheHessian.Theexpectationoperatorofequation(2.1.46)isredundantinourspecificcasebecauseallthesecondderivativequantitiesareconstant.Thus,
UsingtheanalysisofSectionand,itiseasytoshowthat
Least-Squares
Estimation
and
the
CRLB
for
White
Noise
Using
equation(2.1.45),
we
now
evaluate
the
CRLB
for
data
generated
according
tothe
linearreg
ression
model
of
(2.1.11),
for
the
specific
case
of
white
noise
where
Σ=σ2I.That
is,if
we
observe
data
which
obey
the
model
(2.1.11),
what
is
the
lowest
possiblevariance
on
the
estimates
given
by
equation
(2.1.26)
from
(2.1.48),
Least-SquaresEstimationandtheCRLBforColouredNoise
Inthiscase,weconsiderΣtobeanarbitrarycovariancematrix,i.e.,E(nnT)=Σ.Bysubstitutingequation(2.1.45)andevaluating,wecaneasilyshowthattheFisherinformationmatrixJforthiscaseisgivenby
WenowdeveloptheversionofthecovariancematrixoftheLSestimatecorrespondingtoequation(2.1.36)forthecolourednoisecase.Supposeweusethenormalequation(2.1.23)toproducetheestimatexLSforthiscolourednoisecase.UsingthesameanalysisasinSection,exceptusingE(b-Ax0)(b-Ax0)T=Σinsteadofσ2Iasbefore,weget:
Noticethatinthecolourednoisecasewhenthenoiseispre-whitenedasinequation(2.1.53),theresultingmatrixcov(xLS)isequivalenttoJ-1inequation(2.1.51)whichisthecorrespondingformoftheCRLB;i.e.,theequalityoftheboundisnowsatisfied,providedthenoiseispre-whiten.
Hence,inthepresenceofcolourednoisewithknowncovariancematrix,pre-whiteningthenoisebeforeapplyingthelinearleast-squaresestimationprocedurealsoresultsinaMVUEofx.Wehaveseenthisisnotthecasewhenthenoiseisnotpre-whitened.
2.2AGeneralized“Pseudo-Inverse”Approach
toSolving
the
Least-squares
Problem
2.2.1Least
Squares
Solution
Using
the
SVD
Previously
we
have
seen
that
the
LS
problemmay
be
posed
as
where
the
observation
b
is
generated
from
the
regression
model
b=Ax0+n.
For
the
casewhere
A
is
full
rankwe
saw
that
the
solution
xLSwhich
solves
is
given
by
the
normalequation
WearegivenA∈Rm×n,m>nandrank(A)=r≤n.IfthesvdofAisgivenasUΣVT,thenwedefineA+asthepseudo-inverseofA,definedby
ThematrixΣ+isrelatedtoΣinthefollowingway.If
then
Theorem
WhenAisrankdeficienttheuniquesolutionxLSminimizingsuchthat‖x‖2isminimumisgivenby
whereA+isdefinedbyequation(2.2.3).Further,wehave
2.2.2Interpretation
of
the
Pseudo-Inverse
Geometrical
Interpretation
Let
us
now
take
an
other
look
at
the
geometry
of
least
squares.It
sho
wsa
simple
LSproblem
for
the
case
A∈R2×1.We
again
see
that
xLS
is
the
solution
which
corresponds
toprojecting
b
onto
R(A).In
fact,substituting
into
the
expression
AxLS,we
get
But,forthespecificcasewherem>n,weknowfromourpreviousdiscussiononlinearleastsquares,that
wherePistheprojectorontoR(A).Comparingequation(2.2.18)and(2.2.19),andnotingtheprojectorisunique,wehave
Thus,thematrixAA+isaprojectorontoR(A).
ThismayalsobeseeninadifferentwayasfollowsUsingthedefinitionofA+,wehave
WhereIristher×ridentityandUr=[u1,…,ur
].Fromourdiscussiononprojectors,weknowUrUrTisalsoaprojectorontoR(A)whichisthesameasthecolumnspaceofA.
RelationshipofPseudo-InverseSolutiontoNormalEquations
SupposeA∈Rm×n,m>n,thenormalequationsgiveus
butthepseudo-inversegives:
Inthefullrankcase,thesetwoquantitiesmustbeequal.Wecanindeedshowthisisthecaseasfollows:
Welet
betheEDofATAandwelettheSVDofATbedefinedas
Usingtheserelationswehave
asdesired,wherethelastlinefollowsfrom.Thus,forthefull-rankcaseform>n,A+=(ATA
)
-1AT.Inasimilarway,wecanalsoshowthatA+=A(ATA
)
-1forthecasem<n.
The
Pseudo-Inverse
as
a
Generalized
Linear
System
Solver
If
we
are
willing
to
accept
the
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 離子散射譜儀企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 上海網(wǎng)約車出租車合同樣本
- 加盟祛斑合同標(biāo)準(zhǔn)文本
- 包工隊合同樣本
- 保證金合同樣本重慶
- 業(yè)務(wù)助理合同標(biāo)準(zhǔn)文本
- 勞務(wù)外包協(xié)議合同標(biāo)準(zhǔn)文本
- t土方運(yùn)輸合同范例
- 兄弟合伙建廠合同樣本
- 兼職業(yè)務(wù)銷售員合同樣本
- 2025年簽訂好的勞動合同模板
- 物理試題2025年東北三省四城市聯(lián)考暨沈陽市高三質(zhì)量監(jiān)測(二)及答案
- 2025廣東省深圳市中考數(shù)學(xué)復(fù)習(xí)分類匯編《函數(shù)綜合題》含答案解析
- 七年級地理下冊第七單元測試題(人教版)
- 【9道一?!?025年安徽省合肥市蜀山區(qū)九年級中考一模道法試卷(含答案)
- 金融工程重點(diǎn)總結(jié)
- 控?zé)熤R培訓(xùn)課件
- 設(shè)備的技改和更新管理制度
- GB/T 5453-2025紡織品織物透氣性的測定
- 2025年度毛絨玩具采購合同
- 2024年重慶A卷中考滿分作文《美不止一個答案》
評論
0/150
提交評論