




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
LLM4SR:ASurveyonLargeLanguageModelsforScientific
Research
ZIMINGLUO?
,UniversityofTexasatDallas,USA
arXiv:2501.04306v1[cs.CL]8Jan2025
ZONGLINYANG?
,NanyangTechnologicalUniversity,Singapore
ZEXINXU,
UniversityofTexasatDallas,USA
WEIYANG,
UniversityofTexasatDallas,USA
XINYADU,
UniversityofTexasatDallas,USA
Inrecentyears,therapidadvancementofLargeLanguageModels(LLMs)hastransformedthelandscapeofscientificresearch,offeringunprecedentedsupportacrossvariousstagesoftheresearchcycle.ThispaperpresentsthefirstsystematicsurveydedicatedtoexploringhowLLMsarerevolutionizingthescientificresearchprocess.WeanalyzetheuniquerolesLLMsplayacrossfourcriticalstagesofresearch:hypothesisdiscovery,experimentplanningandimplementation,scientificwriting,andpeerreviewing.Ourreviewcomprehensivelyshowcasesthetask-specificmethodologiesandevaluationbenchmarks.Byidentifyingcurrentchallengesandproposingfutureresearchdirections,thissurveynotonlyhighlightsthetransformativepotentialofLLMs,butalsoaimstoinspireandguideresearchersandpractitionersinleveragingLLMstoadvancescientificinquiry.Resourcesareavailableatthefollowingrepository:
/du-nlp-lab/LLM4SR.
CCSConcepts:?Computingmethodologies→Naturallanguageprocessing;?Generalandreference→Surveysandoverviews.
AdditionalKeyWordsandPhrases:LargeLanguageModels,ScientificHypothesisDiscovery,ExperimentPlanningandImplementation,AutomatedScientificWriting,PeerReviewGeneration
ACMReferenceFormat:
ZimingLuo,ZonglinYang,ZexinXu,WeiYang,andXinyaDu.2025.LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch.ACMComput.Surv.1,1(January2025),
37
pages.
/10.1145/
nnnnnnn.nnnnnnn
Automating
Research
Process§3.3
Draftingand
Writing
§4.4
CitationText
Generation
§4.2
RelatedWork
Generation
§4.3
Scientific
Hypothesis
Discovery
§2
Peer
Reviewing§5
OptimizingExperimentDesign§3.2
PaperWriting§4
ExperimentPlanning&Implementation
§3
Fig.1.Schematicoverviewofthescientificresearchpipelinecoveredinthissurvey.Thiscyclicalprocessbeginswithscientifichypothesisdiscovery,followedbyexperimentplanningandimplementation,paperwriting,andfinallypeerreviewingofpapers.Theexperimentplanningstageconsistsofoptimizingexperimentdesignandexecutingresearchtasks,whilethepaperwritingstageconsistsofcitationtextgeneration,relatedworkgeneration,anddrafting&writing.
*Bothauthorscontributedequallytothiswork.
Authors’ContactInformation:
ZimingLuo
,ziming.luo@,UniversityofTexasatDallas,Dallas,Texas,USA;
ZonglinYang
,zonglin001@.sg,NanyangTechnologicalUniversity,Singapore,Singapore;
ZexinXu,
zexin.xu@,UniversityofTexasatDallas,Dallas,Texas,USA;
WeiYang,
wei.yang@,UniversityofTexasatDallas,Dallas,Texas,USA;
XinyaDu
,xinya.du@,UniversityofTexasatDallas,Dallas,Texas,USA.
2025.ACM1557-7341/2025/1-ART
/10.1145/nnnnnnn.nnnnnnn
Preprint.
2LuoandYangetal.
1Introduction
“IfIhaveseenfurther,itisbystandingontheshouldersofgiants.”
—IsaacNewton
ThescientificresearchpipelineisatestamenttotheachievementsoftheEnlightenmentinsystematicinquiry
[17,
58,
58
].Inthistraditionalparadigm,scientificresearchinvolvesaseriesofwell-definedsteps:researchersstartbygatheringbackgroundknowledge,proposehypotheses,designandexecuteexperiments,collectandanalyzedata,andfinallyreportfindingsthroughamanuscriptthatundergoespeerreview.Thiscyclicalprocesshasledtogroundbreakingadvance-mentsinmodernscienceandtechnology,yetitremainsconstrainedbythecreativity,expertise,andfinitetimeandresourcesavailableinherenttohumanresearchers.
Fordecades,thescientificcommunityhassoughttoenhancethisprocessbyautomatingaspectsofscientificresearch,aimingtoincreasetheproductivityofscientists.Earlycomputer-assistedresearchcandatebacktothe1970s,introducingsystemssuchasAutomatedMathematician
[74,
75
]andBACON
[71
],whichshowedthepotentialofmachinestoassistinspecializedresearchtasksliketheoremgenerationandempiricallawidentification.Morerecently,systemssuchasAlphaFold
[62
]andOpenFold
[4
]haveexemplifiedpioneeringeffortstoautomatespecificresearchtasks,significantlyspeedingupscientificprogressintheirrespectivedomainsbythousandsoftimes.YetitwasonlywiththeadventoffoundationmodelsandtherecentexplosioninLargeLanguageModels(LLMs)
[2,
154
]thatthevisionofcomprehensiveAIassistanceacrossmultipleresearchdomainsbecamerealistic
[190
].
TherecentyearshavewitnessedremarkableadvancementsinLLMs,transformingvariousfieldsofAIandNaturalLanguageProcessing(NLP).Thesemodels,suchasGPT-4
[2
]andLLaMA
[154
],havesetnewbenchmarksinunderstanding,generatingandinteractingwithhumanlanguage.Theircapabilities,enhancedbymassivedatasetsandinnovativearchitectures,nowextendbeyondconventionalNLPtaskstomorecomplexanddomain-specificchallenges.Inparticular,theabilityofLLMstoprocessmassiveamountsofdata,generatehuman-liketext,andassistincomplexdecision-makinghascapturedsignificantattentioninthescientificcommunity
[92,
141
].ThesebreakthroughssuggestthatLLMshavethepotentialtorevolutionizethewayscientificresearchisconducted,documented,andevaluated
[156,
165,
174
].
Inthissurvey,weexplorehowLLMsarecurrentlybeingappliedacrossvariousstagesofthescientificresearchprocess.Specifically,weidentifyfourgeneraltaskswhereLLMshavedemonstratednotablepotential.Webeginbyexploringtheirapplicationinscientifichypothesisdiscovery,whereLLMsleverageexistingknowledgeandexperimentalobservationstosuggestnovelresearchideas.Thisisfollowedbyareviewoftheircontributionstoexperimentplanningandimplementation,whereLLMsaidinoptimizingexperimentaldesign,automatingworkflows,andanalyzingdata.Wealsocovertheiruseinscientificwriting,includingthegenerationofcitations,relatedworksections,andevendraftingentirepapers.Finally,wediscusstheirpotentialinpeerreview,whereLLMssupporttheevaluationofscientificpapersbyofferingautomatedreviewsandidentifyingerrorsorinconsistencies.Foreachofthesetasks,weprovideacomprehensivereviewofthemethodologies,benchmarks,andevaluationmethods.Moreover,thesurveyidentifiesthelimitationsofeachtaskandhighlightsareasneedingimprovement.ByanalyzingthevariousstagesoftheresearchcyclewhereLLMscontribute,thissurveycaninspireresearcherstoexploreemergingconcepts,developevaluationmetrics,anddesigninnovativeapproachestointegrateLLMsintotheirworkflowseffectively.
ComparisonwithExistingSurveys.ThissurveyprovidesabroaderandmorecomprehensiveperspectiveontheapplicationsofLLMsacrosstheentirescientificresearchcyclecomparedtopriorspecializedstudies.Forexample,Zhangetal.
[187
]reviewover260LLMsinscientificdiscovery
Preprint.
Preprint.
LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch3
Literature-based
Discovery(§2.2.1)
InductiveReasoning(§2.2.2)
MainTrajectory(§2.3.1)
OtherMethods(§2.3.2)
History(§
2.2)
LBD[47,151],DBLP[155],LinkPredictionModels[152,160,171]
Norton[113],Yangetal.[175],Yangetal.[173],Zhongetal.[191],Zhuetal.[194],Wangetal.[163],Qiuetal.[120]
SciMON[159],MOOSE[174],MCR[145],Qi[119],
FunSearch[130],ChemReasoner[146],HypoGeniC[193],
Scientific
HypothesisDiscovery(§
2)
ResearchAgent[9],LLM-SR[140],SGA[105],AIScientist[103],MLR-Copilot[84],IGA[141],SciAgents[41],Scideator[121],
DevelopmentofMethods(§2.3)
MOOSE-Chem[176],VirSci[148],CoI[77],Nova[49],CycleResearcher[167],SciPIP[164]
Socraticreasoning[30],IdeaSynth[118],HypoRefine[96],LDC[80]
DiscoveryBench[108],DiscoveryWorld[57]
SciMON[159],Tomato[174],Qietal.[119],Kumaretal.[68],Tomato-Chem[176] Benchmarks(§2.4)
Evaluation(§2.5)
LLM-based/Expert-basedEvaluation;DirectEvaluation/Reference-basedEvaluation;
DirectEvaluation/Comparison-basedEvaluation;RealExperimentEvaluation
HuggingGPT[136],CRISPR-GPT[52],ChemCrow[15],Coscientist[14],LLM-RDF[131],AutoGen[168],Lietal.[81],Lietal.[90]
OptimizingExperi-
LargeLanguageModels(LLMs)forScientificResearch
mentalDesign(§
3.2)
DataPreparation
(§3.3.1)
ExperimentPlanning
andImple-mentation(§
3)
Clearning[21,185],Labeling[153],FeatureEngineering[46],Synthesis[82,85,98]
ExperimentExecution
——andWorkflow
Automation(§3.3.2)
DataAnalysisand
ChemCrow[15],Coscientist[14],Wangetal.[157],Ramosetal.[124],ChatDrug[99],DrugAssist[179],ESM-1b[128],ESM-2[95],
FerruzandH?cker[35],Heetal.[44]
AutomatingExperi-mentalProcess(§3.3)
Singhetal.[143],Lietal.[79],MentalLLaMA[172],
Interpretation(§3.3.3)
Daietal.[27],Rasheedetal.[126],Zhaoetal.[188],Oliveretal.[114]
TaskBench[137],DiscoveryWorld[57],MLAgentBench[54],AgentBench[100],Spider2-V[16], DSBench[61],DS-1000[70],CORE-Bench[142],SUPER[13],MLE-Bench[20],LAB-Bench[72],
ScienceAgentBench[24]
Xingetal.[170],AutoCite[161],BACO[40],GuandHahnloser[43],Jungetal.[63]
Benchmarks&
Evaluation(§3.4)
CitationText
Generation(§4.2)
Zimmermannetal.[197],Agarwaletal.[3],Huetal.[50],Shietal.[138],Yuetal.[181],Susnjaketal.[150],LitLLM[3],HiReview[50],Nishimuraetal.[112]
RelatedWork
PaperWriting(§
4)
Generation(§4.3)
Augustetal.[8],SCICAP[48],PaperRobot[160],Ifarganetal.[56],CoAuthor[73],AutoSurvey[165],AIScientist[103]
ALCE[38],CiteBench[37],SciGen[111],SciXGen[22]
DraftingandWriting(§4.4)
Benchmarks&
Evaluation(§4.5)
ReviewRobot
[162]
,Reviewer2
[39]
,SWIF2T
[18]
,SEA
[180]
,MARG
[28]
,MetaGen
[11]
,Kumaretal.
[67]
,MReD
[135]
,CGI2
[184]
,CycleReviewer
[167]
AutomatedPeer
ReviewingGeneration(§
5.2)
PaperMage[101],CocoSciSum[29]
ReviewerGPT[97],PaperQA2[144],Scideator[122]
ReviewFlow[149],CARE[198],DocPilot[110]
Information
Summarization
PeerReview-ing(§
5)
ErrorDetection&
QualityVerification
LLM-assistedPeerReviewWorkflows(§
5.3)
Benchmarks&
Evaluation(§
5.4)
ReviewWritingSupport
MOPRD
[94]
,ORSUM
[184]
,MReD
[135]
,PeerSum
[78]
,NLPeer
[33]
,PeerRead
[65]
,ASAP-Review
[183]
,ReviewCritiqe
[32]
,Reviewer2
[39]
Fig.2.Themaincontentflowandcategorizationofthissurvey.
acrossvariousdisciplines,focusingprimarilyontechnicalaspectssuchasmodelarchitecturesanddatasets,withoutsituatingtheirroleswithinthebroadercontextoftheresearchprocess.Similarly,othersurveystendtoadoptnarrowerscopes,examiningspecificcapabilitiesofLLMsforgeneralapplications,suchasplanning
[55
]orautomation
[158
],ratherthantheirfocusedutilityinscientificresearchworkflows.Additionally,someworksaddressgeneralapproachesrelevanttospecificresearchstagesbutarenotexclusivelycenteredonLLMs,suchasrelatedworkandcitationtext
4LuoandYangetal.
Preprint.
generation
[89
]orpeerreviewprocesses
[33
].Incontrast,thissurveyintegratesthesefragmentedperspectives,providingaholisticanalysisofLLMs’contributionsacrossthescientificworkflowandhighlightingtheirpotentialtoaddressthediverseandevolvingdemandsofmodernresearch.
OrganizationofthisSurvey.AsillustratedinFigure
2
,thestructureofthissurveyisasfollows:§
2
coversLLMsforscientifichypothesisdiscovery,includinganoverviewofmethodologiesandkeychallenges.§
3
focusesonexperimentplanningandimplementation,highlightinghowLLMscanoptimizeandautomatetheseprocesses.§
4
delvesintoautomatedpaperwriting,includingcitationandrelatedworkgeneration,while§
5
exploresLLM-assistedpeerreview.Foreachtopic,thesurveyconcludeswithasummaryofcurrentchallengesandfuturedirectionsinthisrapidlyevolvingfield.
2LLMsforScientificHypothesisDiscovery
2.1Overview
Beforetheemergenceofthefield“LLMsforscientifichypothesisdiscovery”,themostrelatedpreviousresearchdomainsare“l(fā)iterature-baseddiscovery”and“inductivereasoning”.Wefirstsummarizetheresearchinthetworelateddomains(ashistory),thensummarizethemethods,benchmarks,evaluationdevelopmenttrends,andimportantprogress,andfinallyconcludewiththemainchallengesinthediscoverytask.
2.2HistoryofScientificDiscovery
UsingLLMstogeneratenovelscientifichypothesesisanewresearchtopic,mostlyoriginatingfromtworelatedresearchdomains,whichare“l(fā)iterature-baseddiscovery”and“inductivereasoning”.
2.2.1Literature-basedDiscovery.Literature-baseddiscovery(LBD)wasfirstproposedbySwanson
[151
].Thecentralideaisthat“knowledgecanbepublic,yetundiscovered,ifindependentlycreatedfragmentsarelogicallyrelatedbutneverretrieved,broughttogether,andinterpreted.”Therefore,howtoretrievepublicknowledgethatcanbebroughttogethertocreatenewknowledgeremainsachallenge.
Swanson
[151
]proposeaclassicformalizationofLBD,whichisthe“ABC”modelwheretwoconceptsAandCarehypothesizedaslinkediftheybothco-occurwithsomeintermediateconceptBinpapers.Morerecentworkhasusedwordvectors
[155
]orlinkpredictionmodels
[152,
160,
171]
todiscoverlinksbetweenconceptstocomposehypotheses.
However,classicLBDmethodsdonotmodelcontextsthathumanscientistsconsiderintheideationprocess,andarelimitedtopredictingpairwiserelationsbetweendiscreteconcepts
[47
].Toovercometheselimitations,Wangetal.
[159
]makethefirstattempttogroundLBDinanaturallanguagecontexttoconstrainthegenerationspace,andalsousegeneratedsentencesasoutputinsteadofonlypredictingrelationsasinthetraditionalLBD.
AnotherlimitationofLBDisthatithaslongbeenthoughtofasonlybeapplicabletoaveryspecific,narrowtypeofhypothesis
[159]
.However,recentprogressinscientificdiscoveryindicatesthatLBDmighthaveamuchwiderapplicablescope.Particularly,Yangetal.
[174
]andYangetal.
[176
]discussextensivelywithsocialscienceandchemistryresearcherscorrespondingly,andfindthatmostexistingsocialscienceandchemistrypublishedhypotheses(insteadofonlyanarrowtypeofhypotheses)canbeformulatedinaLBDpattern.Itprobablyindicatesthatfuturehypothesesinsocialscienceandchemistrytobepublishedcanalsoresultfrom(correct)linkagesandassociationsofexistingknowledge.
2.2.2InductiveReasoning.Inductivereasoningisaboutfindingageneral“rule”or“hypothesis”thathasawideapplicationscopefromspecific“observations”
[175
].Forexample,Geocentrism,
LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch5
Preprint.
Heliocentricism,andNewton’sLawofGravityareallproposed“rules”basedonthe“observations”ofthemovementsofstarsandplanets.Scientificdiscoveryisadifficulttaskofinductivereasoningtoanextreme,whereeach“rule”isanovelscientificfinding.
Thephilosophyofsciencecommunityhassummarizedthreefundamentalrequirementsfora“rule”frominductivereasoning
[113
],whichare(1)“rule”shouldnotbeinconflictwith“observa-tions”;(2)“rule”shouldreflectthereality;(3)“rule”shouldpresentageneralpatternthatcanbeappliedtoalargerscopethanthe“specific”observations,coveringnewinformationnotexistingintheobservations.Previouslyinductivereasoningresearchismainlyconductedbythe“inductive logicprogramming”community
[26
],whichusesformallanguageandsymbolicreasoners.Yangetal.
[173
]firstworkongenerativeinductivereasoningintheNLPdomain,whichistogeneratenaturallanguagerulesfromspecificnaturallanguageobservationswithlanguagemodels,introduc- ingtherequirementsoninductivereasoningfromthephilosophyofsciencecommunity.Motivatedbytheempiricalexperiencethatlanguagemodelstendtogeneratevagueandnotspecificrules,theyadditionallyproposethefourthrequirement:(4)“rule”shouldbeclearandinenoughdetail.Thefourthrequirementmighthavebeenoverlookedbythephilosophyofsciencecommunitysince it’stooobvious.Motivatedbytherequirements,Yangetal.
[173
]designanoverly-generation-then-filteringmechanism,leveraginglanguagemodelstofirstgeneratemanypreliminaryrulesandthenfilterthosedonotsatisfytherequirements.Thenmethodsaredevelopedtouseself-refinetoreplacefilteringandusemorereasoningstepsforbetterrules
[120,
163,
191,
194
].However,the“rules”thislineofworkstrytoinduceareeitherknownknowledge,ornotscientificknowledgebutsynthesizedpatterns.
Yangetal.
[174
]makethefirstattempttoextendtheclassicinductivereasoningtasksetting(todiscoverknown/syntheticknowledge)intoarealscientificdiscoverysetting:toleverageLLMstoautonomouslydiscovernovelandvalidsocialsciencescientifichypothesesfromthepubliclyavailablewebdata.Specifically,theycollectnews,businessreviews,andWikipediapagesonsocialscienceconceptsasthewebdatatodiscoverhypothesis.
Majumderetal.
[107,
108
]furtherproposetheconceptof“data-drivendiscovery”,whichistodiscoverhypothesesacrossdisciplineswithallthepublicexperimentaldataontheweb(andprivateexperimentaldataathand).Theirmotivationisthatthepotentialofthelargeamountofpubliclyavailableexperimentaldatahasnotbeenfullyexploitedthatlotsofnovelscientifichypothesescouldbediscoveredfromtheexistingdata.
2.3DevelopmentofMethods
Amongthemethodsdevelopedforscientificdiscovery,thereisoneclearmethoddevelopmenttrajectory.Webeginbyintroducingthistrajectory,followedbyanexplorationofothermethods.
2.3.1MainTrajectory.Ingeneral,thismethoddevelopmenttrajectoryforscientificdiscoverycanbeseenasincorporatingmorekeycomponentsintothemethods.Table
1
summarizesthekeycomponentsweidentifyasimportantandindicateswhethereachmethodincorporatesthem.Specifically,theyare“strategyofinspirationretrieval”,“noveltychecker”,“validitychecker”,“claritychecker”,“evolutionaryalgorithm”,“l(fā)everageofmultipleinspiration”,“rankingofhypothesis”,and“automaticresearchquestionconstruction”.Here,each“keycomponent”referstoadetailedanduniquemethodologythathasproveneffectiveforscientificdiscoverytasks.Weexcludebroadgeneralconceptsthatmayintuitivelyseemhelpfulbutit’snotclearhowaspecificmethodfromtheconceptcanbeeffectiveforthistask(e.g.,toolusage).Next,weintroducethesekeycomponents.Foreachkeycomponent,weuseoneortwoparagraphstogiveashortoverview,summarizingitsdevelopmenttrace.ThereferenceinformationforeachmethodmentionedinthissectioncanbefoundinTable
1.
6LuoandYangetal.
Preprint.
InspirationRetrievalStrategy.Inadditiontorelyingonbackgroundknowledge,literature-baseddiscovery(LBD)facilitatestheretrievalofadditionalknowledgeasasourceofinspirationforformulatingnewhypotheses.SciMON
[159
]firstintroducestheconceptsofLBDtothediscoverytask,demonstratingthatnewknowledgecanbecomposedoflinkageofexistingknowledge.Itisvitalthattheinspirationshouldnotbeknowntoberelatedtothebackgroundbefore,oratleastshouldnotbeusedtoassociatewiththebackgroundinaknownway
[176
].Otherwise,thehypothesiswouldnotbenovel.
Inspiredbythe“ABC”modelinclassicLBDformalization,givenabackgroundknowledge,SciMONretrievessemanticallysimilarknowledge,knowledgegraphneighbors,andcitationgraphneighborsasinspirations.Specifically,twoknowledgeareidentifiedas“semanticallysimilar”iftheirembeddingsfromSentenceBERT
[127
]havehighcosinesimilarity;Theknowledgegraphtheybuiltfollowsa“[method,used-for,task]”format.ResearchAgentstrictlyfollowsthe“ABC”modelbyconstructingaconceptgraph,wherealinkrepresentsthetwoconnectedconceptnodeshaveappearedinthesamepaperbefore.Itretrievesinspirationconceptsthatareconnectedwiththebackgroundconceptsontheconceptgraph(conceptco-occurence).Scideatorretrievesinspirationpapersbasedonsemanticmatching(semanticscholarAPIrecommendations)andconceptmatch-ing(paperscontainingsimilarconceptsinthesametopic,samesubarea,anddifferentsubarea).SciPIP
[164
]retrievesinspirationsfromsemanticallysimilarknowledge(basedonSentenceBERT),conceptco-occurence,andcitationgraphneigbors.Itproposesfilteringmethodstofilternotusefulconceptsforconceptco-occurenceretrieval.
Differentfromselectingsemanticorcitationneighborsasinspirations,SciAgentsrandomlysampleanotherconceptthatisconnectedwiththebackgroundconceptinacitationgraph(viaalongorshortpath)astheinspiration.
MOOSE
[174
]proposestouseLLM-selectedinspirations:giventheresearchbackgroundandsomeinspirationcandidatesinthecontext,andaskanLLMtoselectinspirationsfortheresearchbackgroundfromthecandidates.ThenMOOSE-Chem
[176
]alsoadoptsit.MOOSE-Chemassumesthataftertrainingonhundredsofmillionsofscientificpapers,themostadvancedLLMsmightalreadyhaveacertainlevelofabilitytoidentifytheinspirationknowledgeforthebackgroundtocomposeanoveldiscoveryofknowledge.MOOSE-Chemanalyzesthisassumptionbyannotating51chemistrypaperspublishedin2024(whichareonlyavailableonlinein2024)withtheirbackground,inspirations,andhypothesis,andseewhetherLLMswithtrainingdataupto2023canretrievetheannotatedinspirationsgivenonlythebackground.Theirresultsshowaveryhighretrievalrate,indicatingthattheassumptioncouldbelargelycorrect.ThenNovaalsoadoptsLLM-selectedinspirations,withthemotivationthatleveragingtheLLM’sinternalknowledgetodetermineusefulknowledgefornewideasshouldbeabletosurpasstraditionalentityorkeyword-basedretrievalmethods.
FeedbackModules.Thenextkeycomponentistheiterativefeedbackonthegeneratedhypothesesintheaspectsofnovelty,validity,andclarity.ThesethreefeedbacksarefirstproposedbyMOOSE,motivatedbytherequirementsforahypothesisininductivereasoning
[113,
173
].Thesethreeaspectsareobjectiveenoughtogivefeedback,andeachofthemisessentialforagoodhypothesis.
?NoveltyChecker.Thegeneratedhypothesesshouldbeanovelfindingcomparedtotheexistingliterature.Whenahypothesistendstobesimilartoanexistinghypothesis,feedbackonenhancingitsnoveltycouldbebeneficialforhypothesisformulation.ExistingmethodsfornoveltyfeedbackareallbasedonLLMs.Ingeneral,therearethreewaystoprovidenoveltyfeedback.Thefirstmethodevaluateseachgeneratedhypothesisagainstarelatedsurvey(MOOSE);theseconditerativelyretrievesrelevantpapersforcomparison(SciMON,
LLM4SR:ASurveyonLargeLanguageModelsforScientificResearch7
Preprint.
Table1.DiscoveryMethods.Here“NF”=NoveltyFeedback,“VF”=ValidityFeedback,and“CF”=ClarityFeedback,“EA”=EvolutionaryAlgorithm,“LMI”=LeveragingMultipleInspirations,“R”=Ranking,“AQC”=AutomaticResearchQuestionConstruction.Theorderofmethodsreflecttheirfirstappearancetime.
Methods
InspirationRetrievalStrategyNFVFCFEALMIRAQC
SciMON
[159]
MOOSE
[174]
MCR
[145]
Qi
[119]
FunSearch
[130]
ChemReasoner
[146]
HypoGeniC
[193]
ResearchAgent
[9]
LLM-SR
[140]
SGA
[105]
AIScientist
[103]
MLR-Copilot
[84]
IGA
[141]
SciAgents
[41]
Scideator
[121]
MOOSE-Chem
[176]
VirSci
[148]
CoI
[77]
Nova
[49]
CycleResearcher
[167]
SciPIP
[164]
-
-
Semantic&Concept&CitationNeighbors√
√
√
LLMSelection√
-
√
√
√
√
√
√
√
√
√
-
-√
-
-
-
√
ConceptCo-occurrenceNeighbors√
-
-
-
-√
-
-
--
-
-
--
√
-
RandomSelection√
-
-
√
√
√
√
Semantic&ConceptMatching√
-
-
LLMselection√-√-√
-
-
LLMselection-
-
-
--
-
-
Semantic&Concept&CitationNeighbors-
-
-
-
-
-
-
-
-
√
-
-
-
√
-
√
-
-
√
-
-
√
-
-
-
√
√
√
-
√
-
-
-
√
-
-
-
-
-
√
-
-
-
-
-
-
√
√
√
-
-
-
-
-
-
-
√
-
-
-
√
-
-
-
-
√
-
-
-
-
-
-
-
-
√
√
-
-
-
-
√
√
-
-
-
SciAgents,Scideator,CoI);thethirddirectlyleveragestheinternalknowledgeofLLMsforevaluation(Qi,ResearchAgent,AIScientist,MOOSE-Chem,VirSci).
?ValidityChecker.Thegeneratedhypothesesshouldbevalidscience/engineeringfindingsthatpreciselyreflecttheobjectiveuniverse
[113]
.Arealvalidityfeedbackshouldbefromtheresultsofexperiments.However,itistime-consumingandcostlytoconductexperimentsforeachgeneratedhypothesis.Therefore,currently,validityfeedbackalmostentirelyreliesontheheuristicsofLLMsorothertrainedneuralmodels.TheexceptionsareFunSearch,HypoGeniC,LLM-SR,andSGA.Specifically,FunSearchisaboutgenerat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年橡膠注射機項目投資風險評估報告
- 初一語文教師培訓與發(fā)展計劃
- 真石漆施工方案審查意見
- 分紅提成方案范本
- 2025-2030中國蘋果纖維市場現(xiàn)狀預測與未來競爭策略研究報告
- 2025-2030中國花式紗行業(yè)運行現(xiàn)狀與銷售渠道研究報告
- 2025-2030中國芡實種植行業(yè)市場競爭格局及發(fā)展趨勢與投資前景研究報告
- 2025年人教版五年級語文課外活動計劃
- 2025-2030中國航空復合材料行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國致動器和閥門行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 舞臺事故處理流程培訓課件
- 神經(jīng)外科手術后的康復治療方法
- 《我是一張紙》第一課時(作業(yè)設計)部編版道德與法治二年級下冊
- 高二數(shù)學選擇性必修二同步練習與答案解析(基礎訓練)
- 新聞采編人員考試復習材料
- 北京市豐臺區(qū)2023-2024學年高三上學期期中考試語文試題(解析版)
- 中低空飛行的大氣環(huán)境
- 河北醫(yī)療服務價格手冊指南
- 農業(yè)無人設備智能控制與決策
- 長江師范學院《C語言程序設計》2019-2020學年期末考試試卷
- 中國滅絕姓氏的研究報告
評論
0/150
提交評論