【波士頓咨詢】2024賦能未來戰(zhàn)略性電池采購助力純電動汽車BEV的可持續(xù)發(fā)展報告_第1頁
【波士頓咨詢】2024賦能未來戰(zhàn)略性電池采購助力純電動汽車BEV的可持續(xù)發(fā)展報告_第2頁
【波士頓咨詢】2024賦能未來戰(zhàn)略性電池采購助力純電動汽車BEV的可持續(xù)發(fā)展報告_第3頁
【波士頓咨詢】2024賦能未來戰(zhàn)略性電池采購助力純電動汽車BEV的可持續(xù)發(fā)展報告_第4頁
【波士頓咨詢】2024賦能未來戰(zhàn)略性電池采購助力純電動汽車BEV的可持續(xù)發(fā)展報告_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

WHITEPAPER

PoweringtheFuture

UnlockingBatteryElectricVehicleSustainabilityThroughStrategicBatterySourcing

November2024

byNicoleVoigt|JohannaPütz|NicolasMeyer|NathanNiese|TimmLux|MaraKronauer

BostonConsultingGrouppartnerswithleaders

inbusinessandsocietytotackletheirmost

importantchallengesandcapturetheirgreatest

opportunities.BCGwasthepioneerinbusiness

strategywhenitwasfoundedin1963.Today,

weworkcloselywithclientstoembracea

transformationalapproachaimedatbenefitingallstakeholders—empoweringorganizationstogrow,buildsustainablecompetitiveadvantage,and

drivepositivesocietalimpact.

Ourdiverse,globalteamsbringdeepindustryandfunctionalexpertiseandarangeofperspectives

thatquestionthestatusquoandsparkchange.

BCGdeliverssolutionsthroughleading-edge

managementconsulting,technologyanddesign,andcorporateanddigitalventures.Weworkinauniquelycollaborativemodelacrossthefirmandthroughoutalllevelsoftheclientorganization,

fueledbythegoalofhelpingourclientsthriveandenablingthemtomaketheworldabetterplace.

Content

02Introduction

04Batterytypes:howtheydifferandwhywefocusonLFPandNMC811

08Emissionsdrivers:batteryactivematerialasmajorcontributortomanu-

facturingemissions

10Decarbonizationlevers:

twokeyleverstophysicallydecarbonizeactive

materials

18Implications

fordecision-makers

20AbouttheAuthors

12Measuringtheimpact:

CO?emissionsinprimary

sourcingandrecycling

15Bringingittogether:

emissionsreduction

potentialdependson

sourcingandbatterytype

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING1

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING2

Introduction

Asnationsstrivetoreduceemissions,transitioningfrominternalcombustionengine(ICE)vehiclestoelectricvehicles(EVs)isessential.

EVsofferclearenvironmentalbenefitsoverICEvehicles,duetotheirloweroperatingemissions,particularlywhenpoweredbyrenewableenergy.

However,theemissionsassociatedwithEVbatteryproductionareanurgentconcern,because

whiletheydonotunderminetheoverallsustainabilityofEVs,theyclearlypresentanopportunityforfurthertransparencyandimprovement.Onlybyunderstandingthesourcesofemissionsin

batteryproductionaswellasbatterymaterialproductioncandecision-makersexplorewaysto

reducethem.

Ourfocusisontractionbatteries,whichpowerthevehicle'selectricmotorandareoneofthelargestcontributorstoemissionsinEVproduction.Emissionssourcedfromraw(battery)materialsforthemaccountformorethanathirdofthetotalCO?equivalent(CO?e)ofanaverageBatteryElectricVehi-cle(BEV).Inaddition,theCO?eemissionsofaBEVarenearlydoublethoseofanICEvehicleduetothehigherraw-materialrequirements,basedontheaveragebatteryproductioninAsia,nottaking

greengridimpactintoconsideration.Becausethechoicesofrawbatterymaterials—includingtheirextractionandprocessing—occurearlyinthesupplychain,beforetheproductreachesthemanufac-turer,thesedecisionshaveasizeableimpactonscope3upstreamemissions.

Exhibit1|Productionemissiondependingonbatterytype

BatteryActiveMaterials(BAM)

ShareofCO2eemissions

ICE

SteelAlu

tCO2

Cu

Other

BEV

16%

LithiumGraphiteIron

phosphate

19%

6%

Lithium

14%

Cobalt

ManganeseNickel

50%

Graphite

Battery

ShareofCO2eemissions

Non-activematerials

Assembly

Non-activematerials

Assembly

Vehicle

5%

45%1.750%

16%9%

9.1

tCO2

ShareofCO2eemissions

NMC

811

25%

1%

Battery

60%(13.6)

Battery

27%

(4.6)

66%

(9.1)

BAM

BAM

16.8

tCO2

4.6

tCO2

13.6

tCO2

22.5tCO2

42%8.2

LFP

37%

32%

39%

29%

15%

24%

20%

20%

12%

8%

6%

5%

Note:Outsideinview

Source:BCGanalysis

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING3

Thus,ateverystopalongthesupplychain—frommaterialsminersandproducerstometaland

batteryrecyclers,batterymanufacturers,andEVmakers—companiesmustfocusonunderstand-ingtheemissions,thesupply-demandprofileandtherelativecostprofileofdifferentsourcing

optionstounderstandthetradeoffsandsetuptheirsupplychainsaccordinglyandleveragebothgreenprimarysourcingandrecycling.Ensuringaccesstosupplyfromlow-emissionsproduction

routes,expandingrecyclingfacilities,andsecuringsecondarymaterialssuchasend-of-life(EOL)

batteriesareallcriticaltolong-termsustainabilityandmaintainingacompetitiveadvantage.By

balancingbothrecyclingandsustainableprimarysourcingtomeetfuturedemandwhileminimiz-ingenvironmentalimpact,companiescansignificantlyreducetheircarbonfootprintandcontrib-utetoamoresustainablefuture.

Thefollowingparagraphsbrieflyhighlightthispaper'skeyinsights:

?Batterytypes:Wefocusonthetwomostcommonbatterytypes,NMC811andLFP,namedforthe8:1:1ratioofnickel,manganeseandcobaltusedinthecathodeandtheuseoflithium,iron,andphosphate,respectively.NMCbatteriestypicallyallowforfasterchargingandgreaterrangebystoringmoreenergyinasmallerspace,buttheyarecostlierandhavehighermanufacturingemissionsthanLFPbatteries.ThelowerenergydensityofLFPbatteriesmeanstheyweighmoreforthesamedistance,andthereforeBEVsusingLFPbatterieshavealowerrangecomparedtothosewithNMCs.

?Emissionsdrivers:Batteryactivematerials(BAM),suchasnickel,manganese,cobalt,lithiumandgraphite,storeandreleaseenergyinabattery—theyarethekeytechnologycomponent

ofthebattery.ForNMCbatteries,thesematerialsareresponsiblefor60–70%ofthetotalCO?eproductionemissionsperkWh,comparedto35%forLFPbatteries.WhiledecarbonizingBAMiscrucialtoreducingemissionswithoutcompromisingbatteryperformance,decarbonizingothermaterials,giventheirconsiderableshareparticularlyinLFPbatteries,mustalsobeconsidered.

?Decarbonizationlevers:WeconsidertwokeyleverstodecarbonizeBAM:primary(sourcing

greenprimarymaterials)andsecondary(recycling).Greenbatteryproductionrequiresboth,astheavailabilityofgreenprimaryandsecondarymaterialsandcapacitymaybelimitedinthefuture.

?Impactofsourcinglever("primarylever"):GreensourcingofBAMcansignificantlyre-

duceemissions.ForNMCbatteries,themostemission-intensivesourcingmethods(grey/blacksourcing)produceabout180kgCO?eperkWh,versus~70kgCO?eperkWhforgreensourcing,areductionofabout60%.ForLFPbatteries,usinggrey/blackmaterialscreatesapproximately

85kgCO?eperkWh,versusabout30%to~60kgCO?eperkWhforgreensourcing.Forindi-

vidualmaterials,emissionsreductionsof>90%arepossiblecomparedtogrey/blacksourcing.WhileBAM'sprimaryemissionsreductionpotentialissignificant,thelimitedsupplyofgreenmaterialsandintensecompetitionforthemmakereducinggraymaterialemissionsbyimple-mentingESG-compliantstrategiesessential—thoughthiswillbemoreachievableforcertaingraysourcesthanothers,giventhebroadrangeofgraysourcingavailable.

?Impactofrecyclinglever("secondarylever"):RecyclingisthelowestCO?eoptionforsome

BAMmaterialsandplaysakeyroleinemissionsreduction,thoughnotalwaysmatchingthereduc-tionpossiblewithsustainableprimarysourcing.Whileexpectedtocontributeonly10%–20%of

totalBAMsupplyby2030,thescarcityofgreenprimaryandsecondaryBAMmakesrecyclinga

necessity.Inaddition,itavoidsmining-relatedconcerns,helpsmeetrecyclingtargetslikethosesetbytheEuropeanUnion,andreducessupply-chainrisks.Comparedtogrey/blacksourcing,which

resultsin~180kgCO?perkWhforNMC811batteriesand~85kgCO?perkWhforLFPbatteries,

recyclingcanreduceemissionsbyupto~50%forNMC811andupto~25%forLFP.Newerrecyclingtechnologiescurrentlyinindustrializationstagepromiseafurtheremissionreductionpotential.

CO2e

Toexaminethecarbonfootprintofvehicles,weuseCO?equivalent(CO?e)asastandardunittomeasuretheimpactofdifferentgreenhousegasesonglobalwarming.Becausegreenhousegasessuchasmethane(CH?)andnitrous

oxide(N?O)trapheatintheatmospheretodifferentdegrees,CO?eallowsustoexpresstheirimpactonglobalwarminginacommonunit(CO?).

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING4

Batterytypes:howtheydifferandwhywefocusonLFPandNMC811

Lithium-ionbatteriesarethemostwidelyusedenergystoragesystems

inelectricvehicles,differingmainlyintheirchemicalcomposition,whichaffectstheirperformance,cost,andenvironmentalimpact.

Forourstudy,wefocusonNickelManganeseCobalt(NMC811)—namedforthe8:1:1ratio

ofnickel,manganeseandcobaltused—andLithiumIronPhosphate(LFP),whichdiffer

incost,weight,andCO?eemissions(seeExhibit2,representingtheaverageproductioninAsia).

NMC811batteriesareknownfortheirhighenergydensity,storing265–290Wh/kgatthecell

level.Atthebatterylevel,includingcasingandcoolingsystems,theyweighbetween6.2kgand7.2kgperkWh.A500kgNMC811batterycandeliver75kWh,significantlymorethanacomparable

LFPbattery,whichprovides55kWh.ThismakesNMC811idealforhigh-performanceEVswherespaceandweightarecritical.However,NMC811batteriesarecostlierataround$100perkWh,approx.doublethatofLFPbatteries,andcanhavemorethantwicetheenvironmentalimpact.

LithiumIronPhosphate(LFP)batteriesareknownfortheirlongcyclelifeandstrongsafetyprofileduetoalowerriskofthermalrunaway,whichcausesabatterytocatchfire.However,theirlower

energydensity(160–200Wh/kg)requiresthemtobelargerorheavier,at8.6to9.6kgperkWh,

comparedtoNMC811batteries.LFPbatteriesaremorecost-effective,withpricesdroppingto$50

perkWhin2024,abouthalfthecostofNMC811batteries,becausetheydonotrelyonscarcemate-rialslikecobaltandhaveseenanincreaseinproductionscale.Additionally,LFPbatteries,generatingsignificantlylowerCO?emissions,areamoreenvironmentallyfriendlyoption.However,recycling

remainschallengingduetotheabsenceofvaluablematerialsforrecoverybesidelithiumandlowpricesfornewLFPbatteries.

Exhibit2|PopularNMC811andLFPbatteriesdifferincost,weightandCO?emissions

Cost1in$perkWh

Density2inWhperkg

Weight3inkgperkWh

Emissions4inkgCO2eperkWh

NMC811battery

~100

265–290

6.2–7.2

~180

LFPbattery

~50

160–200

8.6–9.6

~85

1BasedonaveragebatterycellpricesinAsia2Densityatcelllevel3Batteryweightatpacklevelof500kg,NMCbattery75kWh,LFPbattery55kWh;Celllevelandpacklevelisnotcomparable,aspacklevelincludesadditionalmaterialsuch

ascasing,coolingsystem,etc.;Therefore,thenumbersforweightanddensitycannotbematched4Consideringrawmaterialsourcingfromthemostcarbonintensivealternatives;Source:ConferenceofMetallurgists(COM)2024

Source:BCGanalysis

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING5

Furtherbatterytypes(outofscopeofthispaper)

InadditiontothemostcommonLFPandNMCbatteries,thereareothertypesoflithium-ionbatteriesthatarenotthefocusinthispaper:

NickelCobaltAluminum(NCA)batteriesNickelCobaltAluminum(NCA)batteriesconsistofnickel,cobalt,and

aluminum,andarevaluedfortheirhighenergydensityandlonglives.Theadditionofaluminumimprovesthestabilityofthebatteryandincreasesitsoveralllife.NCAbatteriesareprimarilyusedbycompaniessuchasTesla,especiallyinhigher-performancevehicles,duetotheirhighenergydensityatarelativelylowweight.However,likeNMCbatteries,

theyareexpensivetoproduceduetothecostofnickelandcobalt.

LithiumManganeseOxide(LMO)batteriesaremadefromlithiummanganeseoxideandarecharacterizedbytheirthermalstabilityandsafety.Thespinelstructureofmanganeseoxideallowsforfastcharginganddischarging,making

LMObatteriessuitableforpowertoolsandelectricvehicles.However,LMObatterieshavealowerenergydensityandashorterlifethanotherlithium-ionbatteries,whichlimitstheiruseinapplicationswherelong-termenergystorageiscritical.

LithiumCobaltOxide(LCO)batteriesaremadeoflithiumcobaltoxideandarecommonlyusedinconsumerelec-

tronicssuchassmartphones,laptops,andcameras.LCObatteriesofferhighenergydensity,whichallowsforcompact

batterysizesinportabledevices.However,theyhavearelativelyshortlifespanandarepronetothermalinstability,

whichcanleadtosafetyconcernsifnotmanagedproperly.Thehighcostandethicalconcernsassociatedwiththesourc-ingofcobaltarealsochallenges.

Solid-statebatteriesareanemergingtechnologythatreplacestheliquidorgelelectrolytefoundintraditionallithi-um-ionbatterieswithasolidelectrolyte.Thisdesignpromisesseveraladvantages,includinghigherenergydensity,im-provedsafety,andlongerlife.Solid-statebatteriesarestillinthedevelopmentstage,buttheyhavesignificantpotentialforfutureapplicationsinelectricvehiclesandportableelectronics,wheretheycouldofferimprovedperformanceandsafetyovercurrentbatterytechnologies.

Materialvs.batteryemissions

Inthisstudy,weusetwounitstotalkaboutemissions:

1.CO?eperkgwhentalkingabouttheemissionsofabatteryactivematerial(BAM)

2.CO?eperkWhwhentalkingaboutemissionsfromafinishedbattery

BAMemissions:AsBAMistypicallysourcedbyweight,thispaperusesCO?eperkgofBAMastheunitofmeasure-menttoreflectcommonsourcingpracticesinbatteryproduction.

Batteryemissions:TheoverallemissionsimpactofbatteriesismeasuredinkgCO?eperkWhtoplaceemissionsinthecontextoftheend-useofthematerials,suchasinEVs.ForEVs,batteriesaretypicallysizedbypowercapacity,e.g.,anenduserwouldbuyaBEVwitha50kWhbattery.

Linkingthetwoemissions:TheCO?emissionsperkWharecalculatedbyfirstdeterminingtheamount(inkg)of

eachmetalrequiredtoproduce1kWhofbatterycapacityforbothLFPandNMC811batteries.Thematerialcomposi-tionisbasedonthereportedbillofmaterialsandstoichiometriccalculationsforthesebatterytypes.TheCO?emis-sionsperkWharethencalculatedbymultiplyingtheCO?eemissionsperkgofeachmetalbytheamountofthat

metalrequiredtoproduce1kWhofbatterycapacity.

Examplecalculation:ExhibitAandExhibitBillustratehowCO?emissionsforBAMwerecalculated,withtheexampleofBAMforgrey/blackprimarysourcingforNMC811andLFPbatteries.Thesamecalculationmethodisusedforallsourcingroutes.

ToestimatetheemissionsofafullEVbattery,therespectivebatterypowerwouldbemultipliedbytheCO?eemissionsperunitofpower,i.e.,kWh:

TotalCO?eEmissionsofanEVbattery:AssumingtheenduserwantstopurchaseaBEVwitha50kWhNMC811battery,thetotalemissionswouldbe181.7kgCO?eperkWh×50kWh=9,085kgCO?eperbattery

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING6

Materialvs.batteryemissions(cont.)

ExhibitA|ExamplecalculationofCO?emissionsforNMC811grey/blacksourcing

1.1

CO2emissionsinkgCO2e/kWh

11.1

29.6

60.1

18.8

Requiredmaterialinkg/kWh2

CO2emissions

5.1

0.2

×

=

18.5

0.6

×

=

80.6

0.4

×

=

2.8

21.9

×

=

9.6

2.0

×

=

inkgCO2eq/kgmaterial1

Manganese

Lithium-Hydroxide

Cobalt

Nickel

Graphite

NMC811BAMfor100%

grey/blacksourcing

1Emissionfornickelandcobaltadjustedtoreflectthebatterychemicals,sincetheunitreferenceinliteratureandcompanyreportsgivenaskgmetalinbatterychemical

2.Assumptionsof75kWhbatterywithenergydensity290Wh/kg

Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts

ExhibitB|ExamplecalculationofCO?emissionsforLFPgrey/blacksourcing

CO2emissionsinkgCO2e/kWh

15.4

13.9

LFPBAMfor100%grey/blacksourcing

Requiredmaterialinkg/kWh2

CO2emissions

inkgCO2eq/kgmaterial1

=31.6×0.5

=9.2×1.5

Lithium-Carbonate

Graphite

1Assumptionsof55kWhbatterywithenergydensity200Wh/kg

Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING7

MoredetailsontheBAMemissionsestimationfortheinterestedreader

TheenvironmentalimpactofbatterymaterialsisassessedintermsofkgCO?eperkgofmetalorcompound.Thebreakdownforthespecificmaterialsisasfollows:

Nickel(Ni)andCobalt(Co):TheenvironmentalimpactofnickelandcobaltisquantifiedbymeasuringtheCO?

emissions(expressedinkgCO?e)perkgofnickelorcobaltcontainedintheirrespectivecompounds,nickelsulfate(NiSO?·6H?O)andcobaltsulfate(CoSO?·7H?O).Thisapproachprovidesanaccuraterepresentationofthe"active"

metalcontentwithinthesecompounds,consistentwithcommonindustrypracticesandmethodologicalstandards.

Itisimportanttonotethatwhilethismethodisaccurate,theCO?valuesmustbenormalizedtoreflecttheemissionsassociatedwiththeentirecompound,notjustthepuremetal.Asaresult,theremaybevariationsinthecalculated

emissionsperkWhwhenappliedtotheoverallbatteryproduction.

Lithium(Li),Manganese(Mn),andGraphite(C):TheassessmentismadeinkgCO?eperkgofLi?CO?,LiOH·H?O,HPMSM(HighPurityManganeseSulfateMonohydrate),orgraphite.Thisapproachisemployedbecausethesemateri-alsaretypicallyuseddirectlyintheircompoundforms,makingtheenvironmentalimpactoftheentirecompound

morerelevant.

Thus,bymeasuringkgCO?eperkgofmetalorcompound,wecanfairlycomparetheenvironmentalimpactoftheactualmetalcontentofdifferentmetals.

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING8

Emissionsdrivers:batteryactivematerialasmajorcontributor

tomanufacturingemissions

Themainbatteryactivematerialsarelithium,nickel,cobalt,manganese,iron,phosphate,andgraphite.

Onthecathodeside,NMCbatteriesuselithium,nickel,manganese,andcobalt,whileLFPbatteriesuselithium,iron,andphosphate.Forbothtypesofbatteries,theanodesidetypicallyusesgraphiteandanelectrolytecontaininglithiumtotransferelectronsduringcharginganddischarging.The

currentflowsthroughcopper(anode)andaluminum(cathode)foils,fromthebatteryintotheelec-triccircuitoftheEVorintotheotherdirectionwhenrecharged.

Reducingemissionsinbatteryproductiondependslargelyonfivekeymaterials—lithium(Li),nickel

(Ni),cobalt(Co),manganese(Mn),andgraphite,whicharethemaincontributorstoemissionsdueto

energy-intensiveextractionandprocessing.Othermaterialslikecopperandaluminumdonotaffect

batterychemistry,andironandphosphatehavelowercarbonfootprintsandlimitedrecyclingpotential.

Decarbonizingthesekeymaterialscanreduceemissionsconsiderably,especiallyinNMC811batter-ies,whereactivematerialsaccountfor66%ofemissions.A75kWhNMC811batteryhasacarbon

footprintofapproximately180kgCO?eperkWh,duetotherelianceonnickelandcobalt,whicharemorecarbon-intensivetomineandprocess.LFPbatterieshaveover50%loweremissionsthan

NMC811,around85kgCO?eperkWhfora55-kWhbattery.LFPbatterieshavealowerfootprintduetotheuseofmoreabundant,lower-emissionmaterialslikeironphosphate,whichkeepsemissionsfromBAMtoonly35%oftotalbatteryemissions(seeExhibit3).

Exhibit3|LFPbatterieshavea~50%lowerCO?footprintthanNMC811batteries

Manganese

Lithium-HydroxideLithium-Carbonate

Cobalt

Nickel

Graphite

84.1

15.4

Steel

13.9

1.4

2.14.01.6

15.8

14.2

9.5

Othermaterials

20.0

NMC811LFP

66%shareoftotalbatteryemissionsinkgand%

PlasticCopper

IronPhosphateAluminium

Furtherbattery

material-kept

constantin

analysis

Batteryactivematerial

–focusofthispaper

Batterymanufacturingprocess

18.8

1.63.8

15.0

181.711.1

29.6

InkgCO2eperkWh

~12066%

~6034%

~29

35%

~55

65%

-54%

60.1

25.0

1.8

1.1

~120

Assumptions:1)EmissionssourcedfromCAMproductionandbatteryassemblyisassumedas20kgCO?/kWhforLFPand25kgCO?/kWhforNMC811.

2)20%materiallossisassumedduringCAMproduction.3)Powerofbatteriesassumedas75kWhforNMC811and55kWhforLFPbattery.Source:Literaturereview;companywebsites;Cylib;Abdelbakyet.Al;BCGAnalysis

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING9

DetailsontheNMC811andLFPBAM

NMC811battery

TheNMC811batterywasselectedbecauseofitshighenergydensity,whichmeansthebatterycanstorealargeamountofenergyrelativetoitsweight.

Lithiumhydroxide(LiOH?H?O)alsoplaysanimportantroleintheNMC811battery.Lithiumhydroxide(LiOH.H?O),asopposedtolithiumcarbonateforLFPbatteries,ispreferredforthemorepowerfulNMCbattery.Thischoiceallowsforamorestableandhigher-capacitycrystalstructureinthecathode,whichiskeytoachievingthehighenergydensityandlonglifethatNMC811batteriesareknownfor.

Nickelsulfate(NiSO?·6H?O)playsanimportantroleinincreasingtheenergydensityofthebattery.InNMC811

batteries,nickelmakesup80%ofthecathode,allowingthebatterytostoremoreenergywithoutincreasingitssizeorweight.Thisisespeciallyimportantforelectricvehicles,whichrequirepowerfulbatterieswithoutcompromisingonspace.Inaddition,usingmorenickelreducestheneedforcobalt,whichismoreexpensiveandhassupplychain(ethical)challenges.

Cobaltsulfate(CoSO?·7H?O)isaddedtostabilizethebatterychemistryforbetterenergydensityandalongerlife.However,thereisgrowingpressuretoreduceoreveneliminatecobaltfromcathodesduetosourcingconcerns,as

mostcobaltisminedintheDemocraticRepublicofCongo(DRC)andrefinedinChina.In2020,69%ofcobaltwas

minedintheDRC,and67%ofbattery-gradecobaltsulfatewasrefinedinChina.1ThisconcentratedroutemayfacedisruptionsduetoconcernsoverartisanalminingpracticesintheDRCandtherisksassociatedwithheavyrelianceonChinaamidtradetensions.Artisanalminingreferstosmall-scale,ofteninformalminingpracticeswhereworkersextractcobaltinhazardousconditionswithlittletonosafetymeasures.

Manganesesulfate(MnSO4·H?O)contributestothestabilityandsafetyofthebattery.Ithelpsimprovethethermalstabilityofthebattery,reducingtheriskofoverheatingandextendingbatterylife.Manganeseismoreabundantandlessexpensivethancobalt,whichhelpskeepproductioncostsdownwhilemaintainingbatteryperformance.

Graphite(C)isusedastheanodematerial,asinLFPbatteries.Itisessentialforstoringandreleasinglithiumionsduringthebattery'schargeanddischargecycles.Withoutgraphite,theNMC811batterywouldnotbeabletoachievetheefficiencyandreliabilityrequiredfordemandingapplicationssuchaselectricvehicles,whereconsistentperfor-

manceovermanychargecyclesiscritical.

LFPBattery

LFPbatteriesareasmartchoiceforthoselookingtobalancecost,durability,andenvironmentalsustainability.Theyofferreliableperformanceusingbatteryactivematerialsthatareeasiertosourceandmoreaffordable,makingthemsuitableforawiderangeofapplications.

Lithiumcarbonate(Li?CO?)isthekeyingredientinLFPbatteries.Itisresponsibleforstoringandreleasingenergy,allowingthebatterytoefficientlypowerdevicesandvehicles.LFPbatteriesspecificallyuselithiumcarbonate(Li2CO3),whichisessentialformakingthebattery'scathode—thepartofthebatterythathelpsmanagetheflowofenergy.Thepurityandavailabilityofthislithiumcompoundiscriticalbecauseitdirectlyaffectshowwellandconsistentlythe

batteryperformsandhowlongitlasts.

Graphite(C)servesastheprimarymaterialforthebattery'sanode,thepartwherelithiumionsarestoredwhenthebatteryisnotinuse.Graphite'slayeredstructureallowsittoeffectivelystoretheseionsandreleasethemwhenneed-ed,contributingtothebattery'sstabilityandensuringsmoothoperationovertime.

1Das,J.;Kleiman,A.;Rehman,A.U.;Verma,R.;Young,M.H."TheCobaltSupplyChainandEnvironmentalLifeCycleImpactsofLithium-IonBatteryEnergyStorageSystems,"Sustainability2024,16,1910.

/10.3390/su16051910

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING10

Decarbonizationlevers:twokeyleverstophysicallydecarbonizeactivematerials

BothLFPandNMC811batteriesrequiresignificantamountsofrawmaterialsforbatteryactivecomponents.

Theextractionandprocessingofthesematerialsisenergy-intensiveandresultsinsignificant

carbonemissions.Theseemissionscanbereducedeitherbymakingthemanufacturingprocessitselfmoresustainable(physicallygreen),byrecycling,orbybalancingemissionsthroughcarbonaccountingmethods.Thispaperfocusesonlyonthefirsttwoapproaches—analyzingmoresus-tainablesourcingoptionsforproductionandrecyclingmaterials—becausetheydirectlyad

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論