




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
WHITEPAPER
PoweringtheFuture
UnlockingBatteryElectricVehicleSustainabilityThroughStrategicBatterySourcing
November2024
byNicoleVoigt|JohannaPütz|NicolasMeyer|NathanNiese|TimmLux|MaraKronauer
BostonConsultingGrouppartnerswithleaders
inbusinessandsocietytotackletheirmost
importantchallengesandcapturetheirgreatest
opportunities.BCGwasthepioneerinbusiness
strategywhenitwasfoundedin1963.Today,
weworkcloselywithclientstoembracea
transformationalapproachaimedatbenefitingallstakeholders—empoweringorganizationstogrow,buildsustainablecompetitiveadvantage,and
drivepositivesocietalimpact.
Ourdiverse,globalteamsbringdeepindustryandfunctionalexpertiseandarangeofperspectives
thatquestionthestatusquoandsparkchange.
BCGdeliverssolutionsthroughleading-edge
managementconsulting,technologyanddesign,andcorporateanddigitalventures.Weworkinauniquelycollaborativemodelacrossthefirmandthroughoutalllevelsoftheclientorganization,
fueledbythegoalofhelpingourclientsthriveandenablingthemtomaketheworldabetterplace.
Content
02Introduction
04Batterytypes:howtheydifferandwhywefocusonLFPandNMC811
08Emissionsdrivers:batteryactivematerialasmajorcontributortomanu-
facturingemissions
10Decarbonizationlevers:
twokeyleverstophysicallydecarbonizeactive
materials
18Implications
fordecision-makers
20AbouttheAuthors
12Measuringtheimpact:
CO?emissionsinprimary
sourcingandrecycling
15Bringingittogether:
emissionsreduction
potentialdependson
sourcingandbatterytype
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING1
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING2
Introduction
Asnationsstrivetoreduceemissions,transitioningfrominternalcombustionengine(ICE)vehiclestoelectricvehicles(EVs)isessential.
EVsofferclearenvironmentalbenefitsoverICEvehicles,duetotheirloweroperatingemissions,particularlywhenpoweredbyrenewableenergy.
However,theemissionsassociatedwithEVbatteryproductionareanurgentconcern,because
whiletheydonotunderminetheoverallsustainabilityofEVs,theyclearlypresentanopportunityforfurthertransparencyandimprovement.Onlybyunderstandingthesourcesofemissionsin
batteryproductionaswellasbatterymaterialproductioncandecision-makersexplorewaysto
reducethem.
Ourfocusisontractionbatteries,whichpowerthevehicle'selectricmotorandareoneofthelargestcontributorstoemissionsinEVproduction.Emissionssourcedfromraw(battery)materialsforthemaccountformorethanathirdofthetotalCO?equivalent(CO?e)ofanaverageBatteryElectricVehi-cle(BEV).Inaddition,theCO?eemissionsofaBEVarenearlydoublethoseofanICEvehicleduetothehigherraw-materialrequirements,basedontheaveragebatteryproductioninAsia,nottaking
greengridimpactintoconsideration.Becausethechoicesofrawbatterymaterials—includingtheirextractionandprocessing—occurearlyinthesupplychain,beforetheproductreachesthemanufac-turer,thesedecisionshaveasizeableimpactonscope3upstreamemissions.
Exhibit1|Productionemissiondependingonbatterytype
BatteryActiveMaterials(BAM)
ShareofCO2eemissions
ICE
SteelAlu
tCO2
Cu
Other
BEV
16%
LithiumGraphiteIron
phosphate
19%
6%
Lithium
14%
Cobalt
ManganeseNickel
50%
Graphite
Battery
ShareofCO2eemissions
Non-activematerials
Assembly
Non-activematerials
Assembly
Vehicle
5%
45%1.750%
16%9%
9.1
tCO2
ShareofCO2eemissions
NMC
811
25%
1%
Battery
60%(13.6)
Battery
27%
(4.6)
66%
(9.1)
BAM
BAM
16.8
tCO2
4.6
tCO2
13.6
tCO2
22.5tCO2
42%8.2
LFP
37%
32%
39%
29%
15%
24%
20%
20%
12%
8%
6%
5%
Note:Outsideinview
Source:BCGanalysis
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING3
Thus,ateverystopalongthesupplychain—frommaterialsminersandproducerstometaland
batteryrecyclers,batterymanufacturers,andEVmakers—companiesmustfocusonunderstand-ingtheemissions,thesupply-demandprofileandtherelativecostprofileofdifferentsourcing
optionstounderstandthetradeoffsandsetuptheirsupplychainsaccordinglyandleveragebothgreenprimarysourcingandrecycling.Ensuringaccesstosupplyfromlow-emissionsproduction
routes,expandingrecyclingfacilities,andsecuringsecondarymaterialssuchasend-of-life(EOL)
batteriesareallcriticaltolong-termsustainabilityandmaintainingacompetitiveadvantage.By
balancingbothrecyclingandsustainableprimarysourcingtomeetfuturedemandwhileminimiz-ingenvironmentalimpact,companiescansignificantlyreducetheircarbonfootprintandcontrib-utetoamoresustainablefuture.
Thefollowingparagraphsbrieflyhighlightthispaper'skeyinsights:
?Batterytypes:Wefocusonthetwomostcommonbatterytypes,NMC811andLFP,namedforthe8:1:1ratioofnickel,manganeseandcobaltusedinthecathodeandtheuseoflithium,iron,andphosphate,respectively.NMCbatteriestypicallyallowforfasterchargingandgreaterrangebystoringmoreenergyinasmallerspace,buttheyarecostlierandhavehighermanufacturingemissionsthanLFPbatteries.ThelowerenergydensityofLFPbatteriesmeanstheyweighmoreforthesamedistance,andthereforeBEVsusingLFPbatterieshavealowerrangecomparedtothosewithNMCs.
?Emissionsdrivers:Batteryactivematerials(BAM),suchasnickel,manganese,cobalt,lithiumandgraphite,storeandreleaseenergyinabattery—theyarethekeytechnologycomponent
ofthebattery.ForNMCbatteries,thesematerialsareresponsiblefor60–70%ofthetotalCO?eproductionemissionsperkWh,comparedto35%forLFPbatteries.WhiledecarbonizingBAMiscrucialtoreducingemissionswithoutcompromisingbatteryperformance,decarbonizingothermaterials,giventheirconsiderableshareparticularlyinLFPbatteries,mustalsobeconsidered.
?Decarbonizationlevers:WeconsidertwokeyleverstodecarbonizeBAM:primary(sourcing
greenprimarymaterials)andsecondary(recycling).Greenbatteryproductionrequiresboth,astheavailabilityofgreenprimaryandsecondarymaterialsandcapacitymaybelimitedinthefuture.
?Impactofsourcinglever("primarylever"):GreensourcingofBAMcansignificantlyre-
duceemissions.ForNMCbatteries,themostemission-intensivesourcingmethods(grey/blacksourcing)produceabout180kgCO?eperkWh,versus~70kgCO?eperkWhforgreensourcing,areductionofabout60%.ForLFPbatteries,usinggrey/blackmaterialscreatesapproximately
85kgCO?eperkWh,versusabout30%to~60kgCO?eperkWhforgreensourcing.Forindi-
vidualmaterials,emissionsreductionsof>90%arepossiblecomparedtogrey/blacksourcing.WhileBAM'sprimaryemissionsreductionpotentialissignificant,thelimitedsupplyofgreenmaterialsandintensecompetitionforthemmakereducinggraymaterialemissionsbyimple-mentingESG-compliantstrategiesessential—thoughthiswillbemoreachievableforcertaingraysourcesthanothers,giventhebroadrangeofgraysourcingavailable.
?Impactofrecyclinglever("secondarylever"):RecyclingisthelowestCO?eoptionforsome
BAMmaterialsandplaysakeyroleinemissionsreduction,thoughnotalwaysmatchingthereduc-tionpossiblewithsustainableprimarysourcing.Whileexpectedtocontributeonly10%–20%of
totalBAMsupplyby2030,thescarcityofgreenprimaryandsecondaryBAMmakesrecyclinga
necessity.Inaddition,itavoidsmining-relatedconcerns,helpsmeetrecyclingtargetslikethosesetbytheEuropeanUnion,andreducessupply-chainrisks.Comparedtogrey/blacksourcing,which
resultsin~180kgCO?perkWhforNMC811batteriesand~85kgCO?perkWhforLFPbatteries,
recyclingcanreduceemissionsbyupto~50%forNMC811andupto~25%forLFP.Newerrecyclingtechnologiescurrentlyinindustrializationstagepromiseafurtheremissionreductionpotential.
CO2e
Toexaminethecarbonfootprintofvehicles,weuseCO?equivalent(CO?e)asastandardunittomeasuretheimpactofdifferentgreenhousegasesonglobalwarming.Becausegreenhousegasessuchasmethane(CH?)andnitrous
oxide(N?O)trapheatintheatmospheretodifferentdegrees,CO?eallowsustoexpresstheirimpactonglobalwarminginacommonunit(CO?).
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING4
Batterytypes:howtheydifferandwhywefocusonLFPandNMC811
Lithium-ionbatteriesarethemostwidelyusedenergystoragesystems
inelectricvehicles,differingmainlyintheirchemicalcomposition,whichaffectstheirperformance,cost,andenvironmentalimpact.
Forourstudy,wefocusonNickelManganeseCobalt(NMC811)—namedforthe8:1:1ratio
ofnickel,manganeseandcobaltused—andLithiumIronPhosphate(LFP),whichdiffer
incost,weight,andCO?eemissions(seeExhibit2,representingtheaverageproductioninAsia).
NMC811batteriesareknownfortheirhighenergydensity,storing265–290Wh/kgatthecell
level.Atthebatterylevel,includingcasingandcoolingsystems,theyweighbetween6.2kgand7.2kgperkWh.A500kgNMC811batterycandeliver75kWh,significantlymorethanacomparable
LFPbattery,whichprovides55kWh.ThismakesNMC811idealforhigh-performanceEVswherespaceandweightarecritical.However,NMC811batteriesarecostlierataround$100perkWh,approx.doublethatofLFPbatteries,andcanhavemorethantwicetheenvironmentalimpact.
LithiumIronPhosphate(LFP)batteriesareknownfortheirlongcyclelifeandstrongsafetyprofileduetoalowerriskofthermalrunaway,whichcausesabatterytocatchfire.However,theirlower
energydensity(160–200Wh/kg)requiresthemtobelargerorheavier,at8.6to9.6kgperkWh,
comparedtoNMC811batteries.LFPbatteriesaremorecost-effective,withpricesdroppingto$50
perkWhin2024,abouthalfthecostofNMC811batteries,becausetheydonotrelyonscarcemate-rialslikecobaltandhaveseenanincreaseinproductionscale.Additionally,LFPbatteries,generatingsignificantlylowerCO?emissions,areamoreenvironmentallyfriendlyoption.However,recycling
remainschallengingduetotheabsenceofvaluablematerialsforrecoverybesidelithiumandlowpricesfornewLFPbatteries.
Exhibit2|PopularNMC811andLFPbatteriesdifferincost,weightandCO?emissions
Cost1in$perkWh
Density2inWhperkg
Weight3inkgperkWh
Emissions4inkgCO2eperkWh
八
NMC811battery
~100
265–290
6.2–7.2
~180
LFPbattery
~50
160–200
8.6–9.6
~85
1BasedonaveragebatterycellpricesinAsia2Densityatcelllevel3Batteryweightatpacklevelof500kg,NMCbattery75kWh,LFPbattery55kWh;Celllevelandpacklevelisnotcomparable,aspacklevelincludesadditionalmaterialsuch
ascasing,coolingsystem,etc.;Therefore,thenumbersforweightanddensitycannotbematched4Consideringrawmaterialsourcingfromthemostcarbonintensivealternatives;Source:ConferenceofMetallurgists(COM)2024
Source:BCGanalysis
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING5
Furtherbatterytypes(outofscopeofthispaper)
InadditiontothemostcommonLFPandNMCbatteries,thereareothertypesoflithium-ionbatteriesthatarenotthefocusinthispaper:
NickelCobaltAluminum(NCA)batteriesNickelCobaltAluminum(NCA)batteriesconsistofnickel,cobalt,and
aluminum,andarevaluedfortheirhighenergydensityandlonglives.Theadditionofaluminumimprovesthestabilityofthebatteryandincreasesitsoveralllife.NCAbatteriesareprimarilyusedbycompaniessuchasTesla,especiallyinhigher-performancevehicles,duetotheirhighenergydensityatarelativelylowweight.However,likeNMCbatteries,
theyareexpensivetoproduceduetothecostofnickelandcobalt.
LithiumManganeseOxide(LMO)batteriesaremadefromlithiummanganeseoxideandarecharacterizedbytheirthermalstabilityandsafety.Thespinelstructureofmanganeseoxideallowsforfastcharginganddischarging,making
LMObatteriessuitableforpowertoolsandelectricvehicles.However,LMObatterieshavealowerenergydensityandashorterlifethanotherlithium-ionbatteries,whichlimitstheiruseinapplicationswherelong-termenergystorageiscritical.
LithiumCobaltOxide(LCO)batteriesaremadeoflithiumcobaltoxideandarecommonlyusedinconsumerelec-
tronicssuchassmartphones,laptops,andcameras.LCObatteriesofferhighenergydensity,whichallowsforcompact
batterysizesinportabledevices.However,theyhavearelativelyshortlifespanandarepronetothermalinstability,
whichcanleadtosafetyconcernsifnotmanagedproperly.Thehighcostandethicalconcernsassociatedwiththesourc-ingofcobaltarealsochallenges.
Solid-statebatteriesareanemergingtechnologythatreplacestheliquidorgelelectrolytefoundintraditionallithi-um-ionbatterieswithasolidelectrolyte.Thisdesignpromisesseveraladvantages,includinghigherenergydensity,im-provedsafety,andlongerlife.Solid-statebatteriesarestillinthedevelopmentstage,buttheyhavesignificantpotentialforfutureapplicationsinelectricvehiclesandportableelectronics,wheretheycouldofferimprovedperformanceandsafetyovercurrentbatterytechnologies.
Materialvs.batteryemissions
Inthisstudy,weusetwounitstotalkaboutemissions:
1.CO?eperkgwhentalkingabouttheemissionsofabatteryactivematerial(BAM)
2.CO?eperkWhwhentalkingaboutemissionsfromafinishedbattery
BAMemissions:AsBAMistypicallysourcedbyweight,thispaperusesCO?eperkgofBAMastheunitofmeasure-menttoreflectcommonsourcingpracticesinbatteryproduction.
Batteryemissions:TheoverallemissionsimpactofbatteriesismeasuredinkgCO?eperkWhtoplaceemissionsinthecontextoftheend-useofthematerials,suchasinEVs.ForEVs,batteriesaretypicallysizedbypowercapacity,e.g.,anenduserwouldbuyaBEVwitha50kWhbattery.
Linkingthetwoemissions:TheCO?emissionsperkWharecalculatedbyfirstdeterminingtheamount(inkg)of
eachmetalrequiredtoproduce1kWhofbatterycapacityforbothLFPandNMC811batteries.Thematerialcomposi-tionisbasedonthereportedbillofmaterialsandstoichiometriccalculationsforthesebatterytypes.TheCO?emis-sionsperkWharethencalculatedbymultiplyingtheCO?eemissionsperkgofeachmetalbytheamountofthat
metalrequiredtoproduce1kWhofbatterycapacity.
Examplecalculation:ExhibitAandExhibitBillustratehowCO?emissionsforBAMwerecalculated,withtheexampleofBAMforgrey/blackprimarysourcingforNMC811andLFPbatteries.Thesamecalculationmethodisusedforallsourcingroutes.
ToestimatetheemissionsofafullEVbattery,therespectivebatterypowerwouldbemultipliedbytheCO?eemissionsperunitofpower,i.e.,kWh:
TotalCO?eEmissionsofanEVbattery:AssumingtheenduserwantstopurchaseaBEVwitha50kWhNMC811battery,thetotalemissionswouldbe181.7kgCO?eperkWh×50kWh=9,085kgCO?eperbattery
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING6
Materialvs.batteryemissions(cont.)
ExhibitA|ExamplecalculationofCO?emissionsforNMC811grey/blacksourcing
1.1
CO2emissionsinkgCO2e/kWh
11.1
29.6
60.1
18.8
Requiredmaterialinkg/kWh2
CO2emissions
5.1
0.2
×
=
18.5
0.6
×
=
80.6
0.4
×
=
2.8
21.9
×
=
9.6
2.0
×
=
inkgCO2eq/kgmaterial1
Manganese
Lithium-Hydroxide
Cobalt
Nickel
Graphite
NMC811BAMfor100%
grey/blacksourcing
1Emissionfornickelandcobaltadjustedtoreflectthebatterychemicals,sincetheunitreferenceinliteratureandcompanyreportsgivenaskgmetalinbatterychemical
2.Assumptionsof75kWhbatterywithenergydensity290Wh/kg
Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts
ExhibitB|ExamplecalculationofCO?emissionsforLFPgrey/blacksourcing
CO2emissionsinkgCO2e/kWh
15.4
13.9
LFPBAMfor100%grey/blacksourcing
Requiredmaterialinkg/kWh2
CO2emissions
inkgCO2eq/kgmaterial1
=31.6×0.5
=9.2×1.5
Lithium-Carbonate
Graphite
1Assumptionsof55kWhbatterywithenergydensity200Wh/kg
Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING7
MoredetailsontheBAMemissionsestimationfortheinterestedreader
TheenvironmentalimpactofbatterymaterialsisassessedintermsofkgCO?eperkgofmetalorcompound.Thebreakdownforthespecificmaterialsisasfollows:
Nickel(Ni)andCobalt(Co):TheenvironmentalimpactofnickelandcobaltisquantifiedbymeasuringtheCO?
emissions(expressedinkgCO?e)perkgofnickelorcobaltcontainedintheirrespectivecompounds,nickelsulfate(NiSO?·6H?O)andcobaltsulfate(CoSO?·7H?O).Thisapproachprovidesanaccuraterepresentationofthe"active"
metalcontentwithinthesecompounds,consistentwithcommonindustrypracticesandmethodologicalstandards.
Itisimportanttonotethatwhilethismethodisaccurate,theCO?valuesmustbenormalizedtoreflecttheemissionsassociatedwiththeentirecompound,notjustthepuremetal.Asaresult,theremaybevariationsinthecalculated
emissionsperkWhwhenappliedtotheoverallbatteryproduction.
Lithium(Li),Manganese(Mn),andGraphite(C):TheassessmentismadeinkgCO?eperkgofLi?CO?,LiOH·H?O,HPMSM(HighPurityManganeseSulfateMonohydrate),orgraphite.Thisapproachisemployedbecausethesemateri-alsaretypicallyuseddirectlyintheircompoundforms,makingtheenvironmentalimpactoftheentirecompound
morerelevant.
Thus,bymeasuringkgCO?eperkgofmetalorcompound,wecanfairlycomparetheenvironmentalimpactoftheactualmetalcontentofdifferentmetals.
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING8
Emissionsdrivers:batteryactivematerialasmajorcontributor
tomanufacturingemissions
Themainbatteryactivematerialsarelithium,nickel,cobalt,manganese,iron,phosphate,andgraphite.
Onthecathodeside,NMCbatteriesuselithium,nickel,manganese,andcobalt,whileLFPbatteriesuselithium,iron,andphosphate.Forbothtypesofbatteries,theanodesidetypicallyusesgraphiteandanelectrolytecontaininglithiumtotransferelectronsduringcharginganddischarging.The
currentflowsthroughcopper(anode)andaluminum(cathode)foils,fromthebatteryintotheelec-triccircuitoftheEVorintotheotherdirectionwhenrecharged.
Reducingemissionsinbatteryproductiondependslargelyonfivekeymaterials—lithium(Li),nickel
(Ni),cobalt(Co),manganese(Mn),andgraphite,whicharethemaincontributorstoemissionsdueto
energy-intensiveextractionandprocessing.Othermaterialslikecopperandaluminumdonotaffect
batterychemistry,andironandphosphatehavelowercarbonfootprintsandlimitedrecyclingpotential.
Decarbonizingthesekeymaterialscanreduceemissionsconsiderably,especiallyinNMC811batter-ies,whereactivematerialsaccountfor66%ofemissions.A75kWhNMC811batteryhasacarbon
footprintofapproximately180kgCO?eperkWh,duetotherelianceonnickelandcobalt,whicharemorecarbon-intensivetomineandprocess.LFPbatterieshaveover50%loweremissionsthan
NMC811,around85kgCO?eperkWhfora55-kWhbattery.LFPbatterieshavealowerfootprintduetotheuseofmoreabundant,lower-emissionmaterialslikeironphosphate,whichkeepsemissionsfromBAMtoonly35%oftotalbatteryemissions(seeExhibit3).
Exhibit3|LFPbatterieshavea~50%lowerCO?footprintthanNMC811batteries
Manganese
Lithium-HydroxideLithium-Carbonate
Cobalt
Nickel
Graphite
84.1
15.4
Steel
13.9
1.4
2.14.01.6
15.8
14.2
9.5
Othermaterials
20.0
NMC811LFP
66%shareoftotalbatteryemissionsinkgand%
PlasticCopper
IronPhosphateAluminium
Furtherbattery
material-kept
constantin
analysis
Batteryactivematerial
–focusofthispaper
Batterymanufacturingprocess
18.8
1.63.8
15.0
181.711.1
29.6
InkgCO2eperkWh
~12066%
~6034%
~29
35%
~55
65%
-54%
60.1
25.0
1.8
1.1
~120
Assumptions:1)EmissionssourcedfromCAMproductionandbatteryassemblyisassumedas20kgCO?/kWhforLFPand25kgCO?/kWhforNMC811.
2)20%materiallossisassumedduringCAMproduction.3)Powerofbatteriesassumedas75kWhforNMC811and55kWhforLFPbattery.Source:Literaturereview;companywebsites;Cylib;Abdelbakyet.Al;BCGAnalysis
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING9
DetailsontheNMC811andLFPBAM
NMC811battery
TheNMC811batterywasselectedbecauseofitshighenergydensity,whichmeansthebatterycanstorealargeamountofenergyrelativetoitsweight.
Lithiumhydroxide(LiOH?H?O)alsoplaysanimportantroleintheNMC811battery.Lithiumhydroxide(LiOH.H?O),asopposedtolithiumcarbonateforLFPbatteries,ispreferredforthemorepowerfulNMCbattery.Thischoiceallowsforamorestableandhigher-capacitycrystalstructureinthecathode,whichiskeytoachievingthehighenergydensityandlonglifethatNMC811batteriesareknownfor.
Nickelsulfate(NiSO?·6H?O)playsanimportantroleinincreasingtheenergydensityofthebattery.InNMC811
batteries,nickelmakesup80%ofthecathode,allowingthebatterytostoremoreenergywithoutincreasingitssizeorweight.Thisisespeciallyimportantforelectricvehicles,whichrequirepowerfulbatterieswithoutcompromisingonspace.Inaddition,usingmorenickelreducestheneedforcobalt,whichismoreexpensiveandhassupplychain(ethical)challenges.
Cobaltsulfate(CoSO?·7H?O)isaddedtostabilizethebatterychemistryforbetterenergydensityandalongerlife.However,thereisgrowingpressuretoreduceoreveneliminatecobaltfromcathodesduetosourcingconcerns,as
mostcobaltisminedintheDemocraticRepublicofCongo(DRC)andrefinedinChina.In2020,69%ofcobaltwas
minedintheDRC,and67%ofbattery-gradecobaltsulfatewasrefinedinChina.1ThisconcentratedroutemayfacedisruptionsduetoconcernsoverartisanalminingpracticesintheDRCandtherisksassociatedwithheavyrelianceonChinaamidtradetensions.Artisanalminingreferstosmall-scale,ofteninformalminingpracticeswhereworkersextractcobaltinhazardousconditionswithlittletonosafetymeasures.
Manganesesulfate(MnSO4·H?O)contributestothestabilityandsafetyofthebattery.Ithelpsimprovethethermalstabilityofthebattery,reducingtheriskofoverheatingandextendingbatterylife.Manganeseismoreabundantandlessexpensivethancobalt,whichhelpskeepproductioncostsdownwhilemaintainingbatteryperformance.
Graphite(C)isusedastheanodematerial,asinLFPbatteries.Itisessentialforstoringandreleasinglithiumionsduringthebattery'schargeanddischargecycles.Withoutgraphite,theNMC811batterywouldnotbeabletoachievetheefficiencyandreliabilityrequiredfordemandingapplicationssuchaselectricvehicles,whereconsistentperfor-
manceovermanychargecyclesiscritical.
LFPBattery
LFPbatteriesareasmartchoiceforthoselookingtobalancecost,durability,andenvironmentalsustainability.Theyofferreliableperformanceusingbatteryactivematerialsthatareeasiertosourceandmoreaffordable,makingthemsuitableforawiderangeofapplications.
Lithiumcarbonate(Li?CO?)isthekeyingredientinLFPbatteries.Itisresponsibleforstoringandreleasingenergy,allowingthebatterytoefficientlypowerdevicesandvehicles.LFPbatteriesspecificallyuselithiumcarbonate(Li2CO3),whichisessentialformakingthebattery'scathode—thepartofthebatterythathelpsmanagetheflowofenergy.Thepurityandavailabilityofthislithiumcompoundiscriticalbecauseitdirectlyaffectshowwellandconsistentlythe
batteryperformsandhowlongitlasts.
Graphite(C)servesastheprimarymaterialforthebattery'sanode,thepartwherelithiumionsarestoredwhenthebatteryisnotinuse.Graphite'slayeredstructureallowsittoeffectivelystoretheseionsandreleasethemwhenneed-ed,contributingtothebattery'sstabilityandensuringsmoothoperationovertime.
1Das,J.;Kleiman,A.;Rehman,A.U.;Verma,R.;Young,M.H."TheCobaltSupplyChainandEnvironmentalLifeCycleImpactsofLithium-IonBatteryEnergyStorageSystems,"Sustainability2024,16,1910.
/10.3390/su16051910
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING10
Decarbonizationlevers:twokeyleverstophysicallydecarbonizeactivematerials
BothLFPandNMC811batteriesrequiresignificantamountsofrawmaterialsforbatteryactivecomponents.
Theextractionandprocessingofthesematerialsisenergy-intensiveandresultsinsignificant
carbonemissions.Theseemissionscanbereducedeitherbymakingthemanufacturingprocessitselfmoresustainable(physicallygreen),byrecycling,orbybalancingemissionsthroughcarbonaccountingmethods.Thispaperfocusesonlyonthefirsttwoapproaches—analyzingmoresus-tainablesourcingoptionsforproductionandrecyclingmaterials—becausetheydirectlyad
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園預防傳染病安全
- 不容忽視的CFA試題及答案連接
- 學習社區(qū)的CFA試題及答案討論
- 創(chuàng)業(yè)活動的主題班會
- 2024年CFA考試集中試題及答案寶典
- CFA成功的心理素質(zhì)試題及答案
- 遼寧省名校聯(lián)盟2024-2025學年高三下學期3月份聯(lián)合考試歷史試題(含解析)
- 教師比賽課件案例范文
- 合作學習在高中英語口語教學中的應用
- 食堂操作安全培訓
- 商法學習通超星期末考試答案章節(jié)答案2024年
- GB/T 44542-2024碳纖維及其原絲灰分和雜質(zhì)成分的測定
- 月子中心聘用月嫂合同(2篇)
- 抖音運營崗位勞務合同
- 流行病學專業(yè)詞匯中英文對照表
- 2024至2030年中國蛋品加工行業(yè)市場行情監(jiān)測與發(fā)展前景展望分析報告
- 班本課程筷樂出發(fā)
- 中等職業(yè)技術(shù)學校《新能源汽車概述》課程標準
- 班主任基本功大賽育人故事一等獎:我的“第一名”
- 雷軍2024演講破釜沉舟
- 安徽省沿淮教育聯(lián)盟2025屆九年級英語第一學期期末學業(yè)水平測試試題含解析
評論
0/150
提交評論