




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)上海震旦職業(yè)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》
2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要多方面的專業(yè)知識(shí)。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)建設(shè)所需專業(yè)知識(shí)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)建設(shè)需要數(shù)據(jù)庫(kù)管理、數(shù)據(jù)建模、數(shù)據(jù)分析等方面的專業(yè)知識(shí)B.數(shù)據(jù)倉(cāng)庫(kù)建設(shè)需要了解業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),以便設(shè)計(jì)出合適的架構(gòu)和模型C.數(shù)據(jù)倉(cāng)庫(kù)建設(shè)只需要技術(shù)人員參與,業(yè)務(wù)人員不需要了解數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)過(guò)程D.數(shù)據(jù)倉(cāng)庫(kù)建設(shè)需要不斷學(xué)習(xí)和掌握新的技術(shù)和方法,以適應(yīng)不斷變化的需求2、數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)需要考慮多方面因素。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)設(shè)計(jì)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)包括數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和數(shù)據(jù)訪問(wèn)等部分B.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)考慮數(shù)據(jù)的規(guī)模、增長(zhǎng)速度和使用頻率等因素C.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)可以采用分層架構(gòu),將數(shù)據(jù)分為不同的層次進(jìn)行管理D.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)一旦確定就不能再進(jìn)行調(diào)整和優(yōu)化,否則會(huì)影響系統(tǒng)的穩(wěn)定性3、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要選擇合適的分類算法。假設(shè)要對(duì)一組醫(yī)學(xué)圖像進(jìn)行疾病分類,圖像特征復(fù)雜且類別不均衡。以下哪種分類算法在處理這種具有挑戰(zhàn)性的分類問(wèn)題時(shí)可能表現(xiàn)更好?()A.支持向量機(jī)B.隨機(jī)森林C.樸素貝葉斯D.K最近鄰算法4、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)隱私和安全是需要重點(diǎn)關(guān)注的問(wèn)題。假設(shè)我們?cè)谔幚戆瑐€(gè)人敏感信息的數(shù)據(jù),以下哪種措施可以有效地保護(hù)數(shù)據(jù)隱私?()A.數(shù)據(jù)加密B.匿名化處理C.訪問(wèn)控制D.以上都是5、在處理多變量數(shù)據(jù)時(shí),降維技術(shù)可以幫助我們簡(jiǎn)化分析。假設(shè)我們有一個(gè)包含多個(gè)相關(guān)變量的數(shù)據(jù)集,以下哪種降維技術(shù)可以保留數(shù)據(jù)的局部結(jié)構(gòu)?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t分布隨機(jī)鄰域嵌入(t-SNE)D.局部線性嵌入(LLE)6、假設(shè)我們要評(píng)估一個(gè)分類模型的性能,除了準(zhǔn)確率外,以下哪個(gè)指標(biāo)還能反映模型對(duì)于不同類別的區(qū)分能力?()A.召回率B.F1值C.均方誤差D.混淆矩陣7、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇對(duì)于圖表的可讀性有很大影響。以下關(guān)于顏色選擇的原則,錯(cuò)誤的是?()A.避免使用過(guò)于鮮艷的顏色B.使用對(duì)比強(qiáng)烈的顏色區(qū)分不同的數(shù)據(jù)C.隨意選擇顏色,只要美觀D.考慮色盲人群的可辨識(shí)度8、在數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的建設(shè)中,需要考慮數(shù)據(jù)的整合和存儲(chǔ)。假設(shè)要為一個(gè)企業(yè)構(gòu)建數(shù)據(jù)存儲(chǔ)架構(gòu),以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市選擇的描述,正確的是:()A.只建立數(shù)據(jù)倉(cāng)庫(kù),不考慮數(shù)據(jù)集市,認(rèn)為數(shù)據(jù)倉(cāng)庫(kù)能夠滿足所有分析需求B.盲目建立數(shù)據(jù)集市,不與數(shù)據(jù)倉(cāng)庫(kù)進(jìn)行有效的集成和協(xié)調(diào)C.根據(jù)企業(yè)的規(guī)模、業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),合理規(guī)劃數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)集市的架構(gòu),確保數(shù)據(jù)的一致性和可用性,并明確它們?cè)跀?shù)據(jù)分析中的角色和作用D.不考慮數(shù)據(jù)的更新和維護(hù),只關(guān)注初始的建設(shè)9、在進(jìn)行數(shù)據(jù)分析時(shí),需要選擇合適的評(píng)估指標(biāo)來(lái)衡量模型的性能。假設(shè)要評(píng)估一個(gè)分類模型的效果,以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是正確分類的樣本數(shù)占總樣本數(shù)的比例,但在類別不平衡的情況下可能不準(zhǔn)確B.召回率衡量了正類樣本被正確預(yù)測(cè)的比例,適用于關(guān)注正類樣本的情況C.F1值綜合了準(zhǔn)確率和召回率,是一個(gè)較為平衡的評(píng)估指標(biāo),但計(jì)算較為復(fù)雜D.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的特點(diǎn),與模型的類型和應(yīng)用場(chǎng)景無(wú)關(guān)10、在數(shù)據(jù)庫(kù)中,若要優(yōu)化查詢語(yǔ)句的執(zhí)行計(jì)劃,以下哪個(gè)工具或技術(shù)可以提供幫助?()A.索引分析工具B.執(zhí)行計(jì)劃查看器C.數(shù)據(jù)庫(kù)性能監(jiān)控工具D.以上都是11、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營(yíng)銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過(guò)簡(jiǎn)單排序就能實(shí)現(xiàn)B.為了預(yù)測(cè)未來(lái)銷售趨勢(shì),應(yīng)該使用時(shí)間序列分析方法C.分析客戶地域分布對(duì)銷售的影響時(shí),無(wú)需考慮其他因素D.要評(píng)估不同營(yíng)銷渠道的效果,只需比較銷售額的大小12、對(duì)于數(shù)據(jù)分析中的文本情感分析,假設(shè)要分析大量的產(chǎn)品評(píng)論,判斷其是正面、負(fù)面還是中性情感。以下哪種方法在處理自然語(yǔ)言的情感傾向時(shí)可能更有效?()A.使用情感詞典,匹配關(guān)鍵詞B.基于機(jī)器學(xué)習(xí)的分類模型C.深度學(xué)習(xí)模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)D.人工閱讀和判斷每條評(píng)論的情感13、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達(dá)數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢(shì)C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準(zhǔn)確性和可靠性D.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力14、在數(shù)據(jù)分析項(xiàng)目中,項(xiàng)目管理和團(tuán)隊(duì)協(xié)作至關(guān)重要。假設(shè)一個(gè)團(tuán)隊(duì)正在進(jìn)行一個(gè)大型數(shù)據(jù)分析項(xiàng)目。以下關(guān)于項(xiàng)目管理的描述,哪一項(xiàng)是不正確的?()A.明確項(xiàng)目目標(biāo)和需求,制定詳細(xì)的項(xiàng)目計(jì)劃和時(shí)間表B.合理分配團(tuán)隊(duì)成員的任務(wù),充分發(fā)揮每個(gè)人的優(yōu)勢(shì)C.項(xiàng)目過(guò)程中不需要進(jìn)行溝通和協(xié)調(diào),各自完成自己的任務(wù)即可D.及時(shí)監(jiān)控項(xiàng)目進(jìn)度,對(duì)出現(xiàn)的問(wèn)題和風(fēng)險(xiǎn)進(jìn)行有效的管理和控制15、在評(píng)估數(shù)據(jù)分析模型的性能時(shí),以下指標(biāo)中,不能用于分類問(wèn)題的是:()A.準(zhǔn)確率B.均方誤差C.召回率D.F1值16、在數(shù)據(jù)分析的探索性數(shù)據(jù)分析(EDA)中,以下不屬于常用方法的是()A.繪制箱線圖B.進(jìn)行假設(shè)檢驗(yàn)C.計(jì)算數(shù)據(jù)的描述性統(tǒng)計(jì)量D.觀察數(shù)據(jù)的分布17、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),需要對(duì)數(shù)據(jù)進(jìn)行探索性分析。以下哪個(gè)工具常用于探索性數(shù)據(jù)分析?()A.ExcelB.SPSSC.PythonD.R18、數(shù)據(jù)挖掘技術(shù)在發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面發(fā)揮著重要作用。假設(shè)我們要從電商網(wǎng)站的用戶購(gòu)買記錄中挖掘用戶的購(gòu)買行為模式。以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,幫助進(jìn)行商品推薦B.分類算法能夠根據(jù)已知的類別標(biāo)簽對(duì)新的數(shù)據(jù)進(jìn)行分類預(yù)測(cè)C.聚類分析將數(shù)據(jù)分為不同的組,但這些組必須事先定義好D.數(shù)據(jù)挖掘需要大量的數(shù)據(jù)和計(jì)算資源,同時(shí)結(jié)果需要進(jìn)一步的分析和驗(yàn)證19、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)對(duì)于描述數(shù)據(jù)特征非常重要。假設(shè)要分析一組學(xué)生的考試成績(jī)分布情況,包括成績(jī)的集中趨勢(shì)和離散程度。以下哪個(gè)統(tǒng)計(jì)指標(biāo)組合最能全面地描述數(shù)據(jù)的分布特征?()A.均值和標(biāo)準(zhǔn)差B.中位數(shù)和方差C.眾數(shù)和極差D.以上指標(biāo)都不夠全面20、在進(jìn)行數(shù)據(jù)分析時(shí),若數(shù)據(jù)的樣本量較小,以下哪種統(tǒng)計(jì)方法需要謹(jǐn)慎使用?()A.方差分析B.t檢驗(yàn)C.非參數(shù)檢驗(yàn)D.回歸分析21、在處理缺失值時(shí),如果缺失值的比例較高且數(shù)據(jù)呈現(xiàn)一定的規(guī)律性,以下哪種方法可能較為有效?()A.基于模型的插補(bǔ)B.多重插補(bǔ)C.隨機(jī)插補(bǔ)D.以上都不是22、在進(jìn)行數(shù)據(jù)分析時(shí),需要考慮數(shù)據(jù)的隱私保護(hù)。假設(shè)要分析醫(yī)療數(shù)據(jù),但又要確?;颊叩碾[私不被泄露。以下哪種數(shù)據(jù)隱私保護(hù)技術(shù)在處理這種敏感數(shù)據(jù)時(shí)更能有效地平衡數(shù)據(jù)分析需求和隱私保護(hù)要求?()A.數(shù)據(jù)匿名化B.數(shù)據(jù)加密C.差分隱私D.以上技術(shù)結(jié)合使用23、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是24、數(shù)據(jù)分析中的數(shù)據(jù)融合是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合方法的描述,正確的是:()A.簡(jiǎn)單地將數(shù)據(jù)拼接在一起,不處理數(shù)據(jù)格式和語(yǔ)義的差異B.不進(jìn)行數(shù)據(jù)的清洗和轉(zhuǎn)換,直接使用原始數(shù)據(jù)進(jìn)行融合C.運(yùn)用數(shù)據(jù)清洗、轉(zhuǎn)換和匹配技術(shù),解決數(shù)據(jù)格式、單位和語(yǔ)義的不一致,確保融合后數(shù)據(jù)的準(zhǔn)確性和可用性D.認(rèn)為數(shù)據(jù)融合不會(huì)引入誤差和沖突,不進(jìn)行質(zhì)量檢查25、數(shù)據(jù)分析中的聚類分析用于將數(shù)據(jù)分為不同的組或簇。假設(shè)要對(duì)一組學(xué)生的學(xué)習(xí)成績(jī)數(shù)據(jù)進(jìn)行聚類,以發(fā)現(xiàn)不同學(xué)習(xí)水平的群體。如果聚類結(jié)果中存在一個(gè)簇的規(guī)模遠(yuǎn)大于其他簇,可能意味著什么?()A.數(shù)據(jù)分布不均衡,需要重新聚類B.大部分學(xué)生的學(xué)習(xí)水平相似C.聚類算法選擇不當(dāng)D.這種情況是正常的,無(wú)需進(jìn)一步處理二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的可視化探索以發(fā)現(xiàn)潛在的模式和關(guān)系,包括交互式可視化工具的應(yīng)用。2、(本題5分)解釋什么是自然語(yǔ)言處理在數(shù)據(jù)分析中的應(yīng)用,包括文本分類、情感分析等任務(wù),以及常用的技術(shù)和工具。3、(本題5分)闡述數(shù)據(jù)可視化中的交互性設(shè)計(jì)原則,說(shuō)明如何通過(guò)交互功能增強(qiáng)用戶對(duì)數(shù)據(jù)的理解和探索能力,并舉例說(shuō)明實(shí)際應(yīng)用中的效果。4、(本題5分)在數(shù)據(jù)分析中,如何處理數(shù)據(jù)中的噪聲和錯(cuò)誤?請(qǐng)說(shuō)明噪聲和錯(cuò)誤的來(lái)源、檢測(cè)方法和處理策略,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線漫畫平臺(tái)保存了漫畫點(diǎn)擊量、用戶評(píng)論、付費(fèi)意愿等數(shù)據(jù)。分析漫畫市場(chǎng)需求,推出受歡迎的漫畫作品。2、(本題5分)某網(wǎng)約車平臺(tái)的專車服務(wù)存有數(shù)據(jù),包括接單司機(jī)信息、乘客行程、服務(wù)評(píng)價(jià)、費(fèi)用等。分析司機(jī)的個(gè)人信息與服務(wù)評(píng)價(jià)和費(fèi)用之間的關(guān)系。3、(本題5分)一家快遞公司記錄了包裹的運(yùn)輸數(shù)據(jù),包括發(fā)貨地、收貨地、重量、運(yùn)輸時(shí)間、費(fèi)用等。研究不同發(fā)貨地和收貨地之間的運(yùn)輸時(shí)間和費(fèi)用差異。4、(本題5分)一家手機(jī)制造商收集了產(chǎn)品的銷售數(shù)據(jù),包括型號(hào)、顏色、配置、銷售地區(qū)、銷售數(shù)量等。研究各地區(qū)對(duì)不同型號(hào)和配置手機(jī)的偏好差異以及銷售趨勢(shì)。5、(本題5分)一家在線旅游平臺(tái)的自駕游產(chǎn)品數(shù)據(jù)包含路線規(guī)劃、景點(diǎn)選擇、費(fèi)用預(yù)算、用戶評(píng)價(jià)等。探討路線規(guī)劃和景點(diǎn)選擇對(duì)費(fèi)用預(yù)算和用戶評(píng)價(jià)的關(guān)系。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)旅游行業(yè)可以利用數(shù)據(jù)分析來(lái)了解游客的行為模式、偏好和需求。闡述如何通過(guò)數(shù)據(jù)分析優(yōu)化旅游產(chǎn)品設(shè)計(jì)、旅游線路規(guī)劃、旅游資源配置,以及如何應(yīng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 應(yīng)聘主播合同協(xié)議
- 委托代理訴訟合同協(xié)議
- 家庭糾紛合同協(xié)議書范本
- 市政管道合同協(xié)議
- 宣傳材料購(gòu)置合同協(xié)議
- 寄予酒店團(tuán)購(gòu)合同協(xié)議
- 定金合同轉(zhuǎn)定金合同協(xié)議
- 委托律師離婚合同協(xié)議
- 委托貸借款合同協(xié)議
- 室內(nèi)徹墻合同協(xié)議
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗(yàn)
- Unit 7 A day to remember Section A 2a - 2e 說(shuō)課稿 2024-2025學(xué)年人教版(2024)七年級(jí)英語(yǔ)下冊(cè)
- xx省城市更新項(xiàng)目可行性研究報(bào)告
- (完整版)python學(xué)習(xí)課件
- 《大學(xué)生心理健康教育》全套教學(xué)課件
- 分級(jí)護(hù)理的內(nèi)容及要點(diǎn)
- 大班語(yǔ)言課件《彩虹色的花》課件
- 施工現(xiàn)場(chǎng)植被清理與臨時(shí)土壤管理方案
- 2024年出售鋁廠鋁渣合同范本
- 《熱泵技術(shù)應(yīng)用》課件
- 龍街鎮(zhèn)中心完小關(guān)于成立膳食委員會(huì)及工作制度建設(shè)情況報(bào)告2
評(píng)論
0/150
提交評(píng)論