




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué)知識點(diǎn)順口溜怎么記憶數(shù)學(xué)知識點(diǎn)
2021-09-1815:30:01
有很多的同學(xué)是非常想著知道,高中數(shù)學(xué)知識點(diǎn)有哪些,小編整理了
相關(guān)信息,希望會對大家有所幫助!
高中數(shù)學(xué)知識點(diǎn)順口溜怎么記憶數(shù)學(xué)知識點(diǎn)
1高中數(shù)學(xué)知識點(diǎn)順口溜是什么
數(shù)學(xué)思想方法總論
高中數(shù)學(xué)一線牽,代數(shù)幾何兩珠連,
三個(gè)基本記心間,四種能力非等閑。
常規(guī)五法天天練,策略六項(xiàng)時(shí)時(shí)變,
精研數(shù)學(xué)七思想,誘思導(dǎo)學(xué)樂無邊。
一線:函數(shù)一條主線(貫穿教材始終)
二珠:代數(shù)、兒何珠聯(lián)璧合(注重知識交匯)
三基:方法(熟)知識(牢)技能(巧)
四能力:概念運(yùn)算(準(zhǔn)確)、邏輯推理(嚴(yán)謹(jǐn))、空間想象(豐富)、
分解問題(靈活)
五法:換元法、配方法、待定系數(shù)法、分析法、歸納法。
六策略:以簡馭繁,正難則反,以退為進(jìn),化異為同,移花接木,以
靜思動(dòng)。
七思想:函數(shù)方程最重要,分類整合常用到。
數(shù)形結(jié)合千般好,化歸轉(zhuǎn)化離不了。
有限自將無限描,或然終被必然表。
特殊一般多辨證,知識交匯步步高。
數(shù)學(xué)知識方法分論
集合與邏輯
集合邏輯互表里,子交并補(bǔ)歸全集。
對錯(cuò)難知開語句,是非分明即命題。
縱橫交錯(cuò)原否逆,充分必要四關(guān)系。
真非假時(shí)假非真,或真且假運(yùn)算奇。
函數(shù)與數(shù)列
數(shù)列函數(shù)子母胎,等差等比自成排。
數(shù)列求和幾多法?通項(xiàng)遞推思路開。
變量分離無好壞,函數(shù)復(fù)合有內(nèi)外。
同增異減定單調(diào),區(qū)間挖隱最值來。
三角函數(shù)
三角定義比值生,弧度互化實(shí)數(shù)融;
同角三類善誘導(dǎo),和差倍半巧變通。
解前若能三平衡,解后便有一脈承
角值計(jì)算大化小,弦切相逢異化同
方程與不等式
函數(shù)方程不等根,常使參數(shù)范圍生
一正二定三相等,均值定理最值成
參數(shù)不定比大小,兩式不同三法證
等與不等無絕對,變量分離方有恒
解析幾何
聯(lián)立方程解交點(diǎn),設(shè)而不求巧判別
韋達(dá)定理表弦長,斜率轉(zhuǎn)化過中點(diǎn)。
選參建模求軌跡,曲線對稱找距離;
動(dòng)點(diǎn)相關(guān)歸定義,動(dòng)中求靜助解析
立體幾何
多點(diǎn)共線兩面交,多線共面一法巧
空間三垂優(yōu)弦大,球面兩點(diǎn)劣弧小
線線關(guān)系線面找,面面成角線線表
等積轉(zhuǎn)化連射影,能割善補(bǔ)架通橋
排列與組合
分步則乘分類加,欲鄰需捆欲隔插
有序則排無序組,正難則反排除它
元素重復(fù)連乘法,特元特位你先拿;
平均分組階乘除,多元少位我當(dāng)家。
二項(xiàng)式定理
二項(xiàng)乘方知多少,萬里源頭通項(xiàng)找;
展開三定項(xiàng)指系,組合系數(shù)楊輝角。
整除證明底變妙,二項(xiàng)求和特值巧;
兩端對稱誰最大?主峰一覽眾山小。
概率與統(tǒng)計(jì)
概率統(tǒng)計(jì)同根生,隨機(jī)發(fā)生等可能;
互斥事件一枝秀,相互獨(dú)立同時(shí)爭。
樣本總體抽樣審,獨(dú)立重復(fù)二項(xiàng)分;
隨機(jī)變量分布列,期望方差論偽真。
2高中數(shù)學(xué)常用知識點(diǎn)
1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異
性、無序性”。
中元素各表示什么?
注重借助于數(shù)軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性質(zhì):
(3)德摩根定律:
4.你會用補(bǔ)集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6.命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價(jià)命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7.對映射的概念了解嗎?映射f:A-B,是否注意到A中元素的任意
性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?
(一對一,多對一,允許B中有元素?zé)o原象。)
8.函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?
(定義域、對應(yīng)法則、值域)
9.求函數(shù)的定義域有哪些常見類型?
10.如何求復(fù)合函數(shù)的定義域?
義域是。
11.求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域
了嗎?
12.反函數(shù)存在的條件是什么?
(---對應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解X;②互換x、y;③注明定義域)
13.反函數(shù)的性質(zhì)有哪些?
①互為反函數(shù)的圖象關(guān)于直線y=x對稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
14.如何用定義證明函數(shù)的單調(diào)性?
(取值、作差、判正負(fù))
如何判斷復(fù)合函數(shù)的單調(diào)性?
,…???)
15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?
值是()
A.0B.1C.2D.3
Aa的最大值為3)
16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關(guān)于原點(diǎn)對稱)
注意如下結(jié)論:
(1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的
乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。
17.你熟悉周期函數(shù)的定義嗎?
函數(shù),T是一個(gè)周期。)
如:
18.你掌握常用的圖象變換了嗎?
注意如下“翻折”變換:
19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?
的雙曲線。
應(yīng)用:①“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系
——二次方程
②求閉區(qū)間[m,n]上的最值。
③求區(qū)間定(動(dòng)),對稱軸動(dòng)(定)的最值問題。
④一元二次方程根的分布問題。
由圖象記性質(zhì)?。ㄗ⒁獾讛?shù)的限定!)
利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?
20.你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?
21.如何解抽象函數(shù)問題?
(賦值法、結(jié)構(gòu)變換法)
22.掌握求函數(shù)值域的常用方法了嗎?
(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式
法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)
如求下列函數(shù)的最值:
23.你記得弧度的定義嗎?能寫出圓心角為a,半徑為R的弧長公式
和扇形面積公式嗎?
24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義
25.你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單
調(diào)區(qū)間、對稱點(diǎn)、對稱軸嗎?
(x,y)作圖象。
27.在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面一一先求出某一個(gè)三角
函數(shù)值,再判定角的范圍。
28.在解含有正、余弦函數(shù)的問題時(shí),你注意(到)運(yùn)用函數(shù)的有界
性了嗎?
29.熟練掌握三角函數(shù)圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30.熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?
“奇”、“偶”指k取奇、偶數(shù)。
A.正值或負(fù)值B,負(fù)值C.非負(fù)值D.正值
31,熟練掌握兩角和、差、倍、降幕公式及其逆向應(yīng)用了嗎?
理解公式之間的聯(lián)系:
應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項(xiàng)數(shù)最少、函數(shù)種類
最少,分母中不含三角函數(shù),能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數(shù)的變換:升、降基公式
(4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。
32.正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,
而解斜三角形?
(應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)
33用反三角函數(shù)表示角時(shí)要注意角的范圍。
34,不等式的性質(zhì)有哪些?
答案:C
35.利用均值不等式:
值?(一正、二定、三相等)
注意如下結(jié)論:
36.不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數(shù)學(xué)歸納法等)
并注意簡單放縮法的應(yīng)用。
(移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)
38.用“穿軸法”解高次不等式一一“奇穿,偶切”,從最大根的右上
方開始
39.解含有參數(shù)的不等式要注意對字母參數(shù)的討論
40.對含有兩個(gè)絕對值的不等式如何去解?
(找零點(diǎn),分段討論,去掉絕對值符號,最后取各段的并集。)
證明:
(按不等號方向放縮)
42.不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問
題,或“△”問題)
43.等差數(shù)列的定義與性質(zhì)
0的二次函數(shù))
項(xiàng),即:
44.等比數(shù)列的定義與性質(zhì)
46.你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習(xí)]
(2)疊乘法
解:
(3)等差型遞推公式
[練習(xí)]
(4)等比型遞推公式
[練習(xí)]
(5)倒數(shù)法
47.你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?
例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對
互為相反數(shù)的項(xiàng)。
解:
[練習(xí)]
(2)錯(cuò)位相減法:
(3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫,再與原來順序的數(shù)列相
加。
[練習(xí)]
48.你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計(jì)算模型:
若每期存入本金p元,每期利率為r,n期后,本利和為:
△若按復(fù)利,如貸款問題一一按揭貸款的每期還款計(jì)算模型(按揭貸
款一一分期等額歸還本息的借款種類)
若貸款(向銀行借款)P元,采用分期等額還款方式,從借款日算起,
一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每
期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足
P——貸款數(shù),r——利率,n——還款期數(shù)
49.解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,
無序組合。
(2)排列:從n個(gè)不同元素中,任取m(mWn)個(gè)元素,按照一定
的順序排成一
(3)組合:從n個(gè)不同元素中任取m(mWn)個(gè)元素并組成一組,
叫做從n個(gè)不
50.解排列與組合問題的規(guī)律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分
類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大
時(shí)可以逐一排出結(jié)果。
如:學(xué)號為1,2,3,4的四名學(xué)生的考試成績
則這四位同學(xué)考試成績的所有可能情況是()
A.24B.15C.12D.10
解析:可分成兩類:
(2)中間兩個(gè)分?jǐn)?shù)相等
相同兩數(shù)分別取90,91,92,對應(yīng)的排列可以數(shù)出來,分別有3,4,
3種,,有10種。
J共有5+10=15(種)情況
51.二項(xiàng)式定理
性質(zhì):
(3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大
且為第
表示)
52.你對隨機(jī)事件之間的關(guān)系熟悉嗎?
的和(并)。
(5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B
互斥。
(6)對立事件(互逆事件):
(7)獨(dú)立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個(gè)
事件叫做相互獨(dú)立事件。
53,對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即
(5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試
驗(yàn)中A恰好發(fā)生
如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),??.n=103
而至少有2件次品為“恰有2次品”和“三件都是次品”
(4)從中依次取5件恰有2件次品。
解析:??,一件一件抽?。ㄓ许樞颍?/p>
分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)
排列問題。
54.抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用
于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽??;系統(tǒng)抽樣,常用
于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一
個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯
差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的
客觀性和平等性。
55.對總體分布的估計(jì)一一用樣本的頻率作為總體的概率,用樣本的
期望(平均值)和方差去估計(jì)總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數(shù);
(3)決定分點(diǎn);
(4)列頻率分布表;
(5)畫頻率直方圖。
如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分
層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為o
56.你對向量的有關(guān)概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。
(6)并線向量(平行向量)——方向相同或相反的向量。
規(guī)定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標(biāo)表示
表示。
57.平面向量的數(shù)量積
數(shù)量積的幾何意義:
(2)數(shù)量積的運(yùn)算法則
[練習(xí)]
答案:
答案:2
答案:
58.線段的定比分點(diǎn)
※.你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?
59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?
平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:
線面平行的判定:
線面平行的性質(zhì):
三垂線定理(及逆定理):
線面垂直:
面面垂直:
60.三類角的定義及求法
(1)異面直線所成的角e,o°<oW90°
(2)直線與平面所成的角。,0°We<90。
(三垂線定理法:A£a作或證AB±B于B,作BO,棱于0,連AO,
則人0_1棱1,???NAOB為所求。)
三類角的求法:
①找出或作出有關(guān)的角。
②證明其符合定義,并指出所求作的角。
③計(jì)算大小(解直角三角形,或用余弦定理)。
[練習(xí)]
(1)如圖,OA為a的斜線OB為其在Q內(nèi)射影,OC為a內(nèi)過。點(diǎn)
任一直線。
(2)如圖,正四棱柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側(cè)
面B1BCC1所成的為30°o
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角Cl—BD1—B1的大小。
(3)如圖ABCD為菱形,ZDAB=60°,PDlffiABCD,且PD=AD,
求面PAB與面PCD所成的銳二面角的大小。
(VAB/7DC,P為面PAB與面PCD的公共點(diǎn),作PF〃AB,則PF為面
PCD與面PAB的交線...)
61.空間有幾種距離?如何求距離?
點(diǎn)與點(diǎn),點(diǎn)與線,點(diǎn)與面,線與線,線與面,面與面間距離。
將空間距離轉(zhuǎn)化為兩點(diǎn)的距離,構(gòu)造三角形,解三角形求線段的長(如:
三垂線定理法,或者用等積轉(zhuǎn)化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點(diǎn)C到面AB1C1的距離為;
(2)點(diǎn)B到面ACB1的距離為;
(3)直線A1D1到面AB1C1的距離為;
(4)面ABIC與面A1DC1的距離為;
(5)點(diǎn)B到直線A1C1的距離為o
62.你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同協(xié)議未經(jīng)合同公司蓋章是否有效
- 《2025委托生產(chǎn)合同》
- 農(nóng)藥試劑采購合同范本
- 2025商用建筑設(shè)計(jì)合同
- 2025火鍋店加盟合同范本
- 2024年自然資源部第二海洋研究所招聘在職人員真題
- 2024年煙臺市招遠(yuǎn)市衛(wèi)生健康局所屬事業(yè)單位招聘真題
- 2024年茂名市市屬事業(yè)單位考試真題
- 建筑加固維修合同范本
- 2024年成都市雙流區(qū)教育系統(tǒng)招聘招在職教師真題
- 2024年強(qiáng)基計(jì)劃解讀 課件-2024屆高三下學(xué)期主題班會
- 認(rèn)識常用電子元件圖解
- DB21-T 3413-2021地下工程自防護(hù)混凝土結(jié)構(gòu)耐久性技術(shù)規(guī)程
- 學(xué)校食品安全管理
- 痙攣性斜頸的物理治療與按摩技術(shù)
- 團(tuán)隊(duì)溝通與協(xié)作培訓(xùn)
- 美的社會責(zé)任報(bào)告2023
- 2021年4月自考00908網(wǎng)絡(luò)營銷與策劃試題及答案含評分參考
- 2019外研社王嫣演講稿
- 設(shè)備安裝調(diào)試記錄表
- 臨床路徑工作總結(jié)醫(yī)院臨床路徑管理工作總結(jié)
評論
0/150
提交評論