




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024年普通高等學(xué)校招生全國統(tǒng)一考試(新課標(biāo)II卷)數(shù)學(xué)本試卷共10頁,19小題,滿分150分.注意事項(xiàng):1.答題前,先將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)、座位號(hào)填寫在試卷和答題卡上,并將準(zhǔn)考證號(hào)條形碼粘貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.3.填空題和解答題的作答:用黑色簽字筆直接答在答題卡上對(duì)應(yīng)的答題區(qū)域內(nèi).寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.4.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并上交.一、單項(xiàng)選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)是正確的.請(qǐng)把正確的選項(xiàng)填涂在答題卡相應(yīng)的位置上.1.已知,則()A.0 B.1 C. D.22.已知命題p:,;命題q:,,則()A.p和q都是真命題 B.和q都是真命題C.p和都是真命題 D.和都是真命題3.已知向量滿足,且,則()A. B. C. D.14.某農(nóng)業(yè)研究部門在面積相等的100塊稻田上種植一種新型水稻,得到各塊稻田的畝產(chǎn)量(單位:kg)并部分整理下表畝產(chǎn)量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)頻數(shù)612182410據(jù)表中數(shù)據(jù),結(jié)論中正確的是()A.100塊稻田畝產(chǎn)量的中位數(shù)小于1050kgB.100塊稻田中畝產(chǎn)量低于1100kg稻田所占比例超過80%C.100塊稻田畝產(chǎn)量的極差介于200kg至300kg之間D.100塊稻田畝產(chǎn)量的平均值介于900kg至1000kg之間5.已知曲線C:(),從C上任意一點(diǎn)P向x軸作垂線段,為垂足,則線段的中點(diǎn)M的軌跡方程為()A.() B.()C.() D.()6.設(shè)函數(shù),,當(dāng)時(shí),曲線與恰有一個(gè)交點(diǎn),則()A. B. C.1 D.27.已知正三棱臺(tái)的體積為,,,則與平面ABC所成角的正切值為()A. B.1 C.2 D.38.設(shè)函數(shù),若,則的最小值為()A. B. C. D.1二、多項(xiàng)選擇題:本大題共3小題,每小題6分,共18分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)得6分,選對(duì)但不全的得部分分,有選錯(cuò)的得0分.9.對(duì)于函數(shù)和,下列正確的有()A.與有相同零點(diǎn) B.與有相同最大值C.與有相同的最小正周期 D.與的圖像有相同的對(duì)稱軸10.拋物線C:的準(zhǔn)線為l,P為C上的動(dòng)點(diǎn),過P作的一條切線,Q為切點(diǎn),過P作l的垂線,垂足為B,則()A.l與相切B.當(dāng)P,A,B三點(diǎn)共線時(shí),C.當(dāng)時(shí),D.滿足的點(diǎn)有且僅有2個(gè)11.設(shè)函數(shù),則()A.當(dāng)時(shí),有三個(gè)零點(diǎn)B.當(dāng)時(shí),是的極大值點(diǎn)C.存在a,b,使得為曲線的對(duì)稱軸D.存在a,使得點(diǎn)為曲線的對(duì)稱中心三、填空題:本大題共3小題,每小題5分,共15分.12.記為等差數(shù)列的前n項(xiàng)和,若,,則________.13.已知為第一象限角,為第三象限角,,,則_______.14.在如圖的4×4方格表中選4個(gè)方格,要求每行和每列均恰有一個(gè)方格被選中,則共有________種選法,在所有符合上述要求的選法中,選中方格中的4個(gè)數(shù)之和的最大值是________.四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.記的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求A.(2)若,,求的周長.16.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.17.如圖,平面四邊形ABCD中,,,,,,點(diǎn)E,F(xiàn)滿足,,將沿EF對(duì)折至,使得.(1)證明:;(2)求面PCD與面PBF所成的二面角的正弦值.18.某投籃比賽分為兩個(gè)階段,每個(gè)參賽隊(duì)由兩名隊(duì)員組成,比賽具體規(guī)則如下:第一階段由參賽隊(duì)中一名隊(duì)員投籃3次,若3次都未投中,則該隊(duì)被淘汰,比賽成員為0分;若至少投中一次,則該隊(duì)進(jìn)入第二階段,由該隊(duì)的另一名隊(duì)員投籃3次,每次投中得5分,未投中得0分.該隊(duì)的比賽成績?yōu)榈诙A段的得分總和.某參賽隊(duì)由甲、乙兩名隊(duì)員組成,設(shè)甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨(dú)立.(1)若,,甲參加第一階段比賽,求甲、乙所在隊(duì)比賽成績不少于5分的概率.(2)假設(shè),(i)為使得甲、乙所在隊(duì)比賽成績?yōu)?5分的概率最大,應(yīng)該由誰參加第一階段比賽?(ii)為使得甲、乙,所在隊(duì)的比賽成績的數(shù)學(xué)期望最大,應(yīng)該由誰參加第一階段比賽?19.已知雙曲線,點(diǎn)在上,為常數(shù),.按照如下方式依次構(gòu)造點(diǎn),過作斜率為直線與的左支交于點(diǎn),令為關(guān)于軸的對(duì)稱點(diǎn),記的坐標(biāo)為.(1)若,求;(2)證明:數(shù)列是公比為的等比數(shù)列;(3)設(shè)為面積,證明:對(duì)任意的正整數(shù),.
2024年普通高等學(xué)校招生全國統(tǒng)一考試(新課標(biāo)II卷)數(shù)學(xué)本試卷共10頁,19小題,滿分150分.注意事項(xiàng):1.答題前,先將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)、座位號(hào)填寫在試卷和答題卡上,并將準(zhǔn)考證號(hào)條形碼粘貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.3.填空題和解答題的作答:用黑色簽字筆直接答在答題卡上對(duì)應(yīng)的答題區(qū)域內(nèi).寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.4.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并上交.一、單項(xiàng)選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)是正確的.請(qǐng)把正確的選項(xiàng)填涂在答題卡相應(yīng)的位置上.1.已知,則()A.0 B.1 C. D.2【答案】C【解析】【分析】由復(fù)數(shù)模的計(jì)算公式直接計(jì)算即可.【詳解】若,則.故選:C2.已知命題p:,;命題q:,,則()A.p和q都是真命題 B.和q都是真命題C.p和都是真命題 D.和都是真命題【答案】B【解析】【分析】對(duì)于兩個(gè)命題而言,可分別取、,再結(jié)合命題及其否定的真假性相反即可得解.【詳解】對(duì)于而言,取,則有,故是假命題,是真命題,對(duì)于而言,取,則有,故是真命題,是假命題,綜上,和都是真命題.故選:B.3.已知向量滿足,且,則()A. B. C. D.1【答案】B【解析】【分析】由得,結(jié)合,得,由此即可得解.【詳解】因?yàn)?,所以,即,又因?yàn)?,所以,從?故選:B.4.某農(nóng)業(yè)研究部門在面積相等的100塊稻田上種植一種新型水稻,得到各塊稻田的畝產(chǎn)量(單位:kg)并部分整理下表畝產(chǎn)量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)頻數(shù)612182410據(jù)表中數(shù)據(jù),結(jié)論中正確的是()A.100塊稻田畝產(chǎn)量的中位數(shù)小于1050kgB.100塊稻田中畝產(chǎn)量低于1100kg的稻田所占比例超過80%C.100塊稻田畝產(chǎn)量的極差介于200kg至300kg之間D.100塊稻田畝產(chǎn)量的平均值介于900kg至1000kg之間【答案】C【解析】【分析】計(jì)算出前三段頻數(shù)即可判斷A;計(jì)算出低于1100kg的頻數(shù),再計(jì)算比例即可判斷B;根據(jù)極差計(jì)算方法即可判斷C;根據(jù)平均值計(jì)算公式即可判斷D.【詳解】對(duì)于A,根據(jù)頻數(shù)分布表可知,,所以畝產(chǎn)量的中位數(shù)不小于,故A錯(cuò)誤;對(duì)于B,畝產(chǎn)量不低于的頻數(shù)為,所以低于的稻田占比為,故B錯(cuò)誤;對(duì)于C,稻田畝產(chǎn)量的極差最大為,最小為,故C正確;對(duì)于D,由頻數(shù)分布表可得,畝產(chǎn)量在的頻數(shù)為,所以平均值為,故D錯(cuò)誤.故選;C.5.已知曲線C:(),從C上任意一點(diǎn)P向x軸作垂線段,為垂足,則線段的中點(diǎn)M的軌跡方程為()A.() B.()C.() D.()【答案】A【解析】【分析】設(shè)點(diǎn),由題意,根據(jù)中點(diǎn)的坐標(biāo)表示可得,代入圓的方程即可求解.【詳解】設(shè)點(diǎn),則,因?yàn)闉榈闹悬c(diǎn),所以,即,又在圓上,所以,即,即點(diǎn)的軌跡方程為.故選:A6.設(shè)函數(shù),,當(dāng)時(shí),曲線與恰有一個(gè)交點(diǎn),則()A. B. C.1 D.2【答案】D【解析】【分析】解法一:令,分析可知曲線與恰有一個(gè)交點(diǎn),結(jié)合偶函數(shù)的對(duì)稱性可知該交點(diǎn)只能在y軸上,即可得,并代入檢驗(yàn)即可;解法二:令,可知為偶函數(shù),根據(jù)偶函數(shù)的對(duì)稱性可知的零點(diǎn)只能為0,即可得,并代入檢驗(yàn)即可.【詳解】解法一:令,即,可得,令,原題意等價(jià)于當(dāng)時(shí),曲線與恰有一個(gè)交點(diǎn),注意到均為偶函數(shù),可知該交點(diǎn)只能在y軸上,可得,即,解得,若,令,可得因?yàn)?,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則方程有且僅有一個(gè)實(shí)根0,即曲線與恰有一個(gè)交點(diǎn),所以符合題意;綜上所述:.解法二:令,原題意等價(jià)于有且僅有一個(gè)零點(diǎn),因?yàn)?,則為偶函數(shù),根據(jù)偶函數(shù)的對(duì)稱性可知的零點(diǎn)只能為0,即,解得,若,則,又因當(dāng)且僅當(dāng)時(shí),等號(hào)成立,可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即有且僅有一個(gè)零點(diǎn)0,所以符合題意;故選:D.7.已知正三棱臺(tái)的體積為,,,則與平面ABC所成角的正切值為()A. B.1 C.2 D.3【答案】B【解析】【分析】解法一:根據(jù)臺(tái)體的體積公式可得三棱臺(tái)的高,做輔助線,結(jié)合正三棱臺(tái)的結(jié)構(gòu)特征求得,進(jìn)而根據(jù)線面夾角的定義分析求解;解法二:將正三棱臺(tái)補(bǔ)成正三棱錐,與平面ABC所成角即為與平面ABC所成角,根據(jù)比例關(guān)系可得,進(jìn)而可求正三棱錐的高,即可得結(jié)果.【詳解】解法一:分別取的中點(diǎn),則,可知,設(shè)正三棱臺(tái)的為,則,解得,如圖,分別過作底面垂線,垂足為,設(shè),則,,可得,結(jié)合等腰梯形可得,即,解得,所以與平面ABC所成角的正切值為;解法二:將正三棱臺(tái)補(bǔ)成正三棱錐,則與平面ABC所成角即為與平面ABC所成角,因?yàn)?,則,可知,則,設(shè)正三棱錐的高為,則,解得,取底面ABC的中心為,則底面ABC,且,所以與平面ABC所成角的正切值.故選:B.8.設(shè)函數(shù),若,則的最小值為()A. B. C. D.1【答案】C【解析】【分析】解法一:由題意可知:的定義域?yàn)?,分類討論與的大小關(guān)系,結(jié)合符號(hào)分析判斷,即可得,代入可得最值;解法二:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)分析的符號(hào),進(jìn)而可得的符號(hào),即可得,代入可得最值.【詳解】解法一:由題意可知:的定義域?yàn)?,令解得;令解得;若,?dāng)時(shí),可知,此時(shí),不合題意;若,當(dāng)時(shí),可知,此時(shí),不合題意;若,當(dāng)時(shí),可知,此時(shí);當(dāng)時(shí),可知,此時(shí);可知若,符合題意;若,當(dāng)時(shí),可知,此時(shí),不合題意;綜上所述:,即,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以的最小值為;解法二:由題意可知:的定義域?yàn)?,令解得;令解得;則當(dāng)時(shí),,故,所以;時(shí),,故,所以;故,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以的最小值為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:分別求、的根,以根和函數(shù)定義域?yàn)榕R界,比較大小分類討論,結(jié)合符號(hào)性分析判斷.二、多項(xiàng)選擇題:本大題共3小題,每小題6分,共18分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)得6分,選對(duì)但不全的得部分分,有選錯(cuò)的得0分.9.對(duì)于函數(shù)和,下列正確的有()A.與有相同零點(diǎn) B.與有相同最大值C.與有相同的最小正周期 D.與的圖像有相同的對(duì)稱軸【答案】BC【解析】【分析】根據(jù)正弦函數(shù)的零點(diǎn),最值,周期公式,對(duì)稱軸方程逐一分析每個(gè)選項(xiàng)即可.【詳解】A選項(xiàng),令,解得,即為零點(diǎn),令,解得,即為零點(diǎn),顯然零點(diǎn)不同,A選項(xiàng)錯(cuò)誤;B選項(xiàng),顯然,B選項(xiàng)正確;C選項(xiàng),根據(jù)周期公式,的周期均為,C選項(xiàng)正確;D選項(xiàng),根據(jù)正弦函數(shù)的性質(zhì)的對(duì)稱軸滿足,的對(duì)稱軸滿足,顯然圖像的對(duì)稱軸不同,D選項(xiàng)錯(cuò)誤.故選:BC10.拋物線C:的準(zhǔn)線為l,P為C上的動(dòng)點(diǎn),過P作的一條切線,Q為切點(diǎn),過P作l的垂線,垂足為B,則()A.l與相切B.當(dāng)P,A,B三點(diǎn)共線時(shí),C.當(dāng)時(shí),D.滿足的點(diǎn)有且僅有2個(gè)【答案】ABD【解析】【分析】A選項(xiàng),拋物線準(zhǔn)線為,根據(jù)圓心到準(zhǔn)線的距離來判斷;B選項(xiàng),三點(diǎn)共線時(shí),先求出的坐標(biāo),進(jìn)而得出切線長;C選項(xiàng),根據(jù)先算出的坐標(biāo),然后驗(yàn)證是否成立;D選項(xiàng),根據(jù)拋物線的定義,,于是問題轉(zhuǎn)化成的點(diǎn)的存在性問題,此時(shí)考察的中垂線和拋物線的交點(diǎn)個(gè)數(shù)即可,亦可直接設(shè)點(diǎn)坐標(biāo)進(jìn)行求解.【詳解】A選項(xiàng),拋物線的準(zhǔn)線為,的圓心到直線的距離顯然是,等于圓的半徑,故準(zhǔn)線和相切,A選項(xiàng)正確;B選項(xiàng),三點(diǎn)共線時(shí),即,則的縱坐標(biāo),由,得到,故,此時(shí)切線長,B選項(xiàng)正確;C選項(xiàng),當(dāng)時(shí),,此時(shí),故或,當(dāng)時(shí),,,,不滿足;當(dāng)時(shí),,,,不滿足;于是不成立,C選項(xiàng)錯(cuò)誤;D選項(xiàng),方法一:利用拋物線定義轉(zhuǎn)化根據(jù)拋物線的定義,,這里,于是時(shí)點(diǎn)的存在性問題轉(zhuǎn)化成時(shí)點(diǎn)的存在性問題,,中點(diǎn),中垂線的斜率為,于是的中垂線方程為:,與拋物線聯(lián)立可得,,即的中垂線和拋物線有兩個(gè)交點(diǎn),即存在兩個(gè)點(diǎn),使得,D選項(xiàng)正確.方法二:(設(shè)點(diǎn)直接求解)設(shè),由可得,又,又,根據(jù)兩點(diǎn)間的距離公式,,整理得,,則關(guān)于的方程有兩個(gè)解,即存在兩個(gè)這樣的點(diǎn),D選項(xiàng)正確.故選:ABD11.設(shè)函數(shù),則()A.當(dāng)時(shí),有三個(gè)零點(diǎn)B.當(dāng)時(shí),是的極大值點(diǎn)C.存在a,b,使得為曲線的對(duì)稱軸D.存在a,使得點(diǎn)為曲線的對(duì)稱中心【答案】AD【解析】【分析】A選項(xiàng),先分析出函數(shù)的極值點(diǎn)為,根據(jù)零點(diǎn)存在定理和極值的符號(hào)判斷出在上各有一個(gè)零點(diǎn);B選項(xiàng),根據(jù)極值和導(dǎo)函數(shù)符號(hào)的關(guān)系進(jìn)行分析;C選項(xiàng),假設(shè)存在這樣的,使得為的對(duì)稱軸,則為恒等式,據(jù)此計(jì)算判斷;D選項(xiàng),若存在這樣的,使得為的對(duì)稱中心,則,據(jù)此進(jìn)行計(jì)算判斷,亦可利用拐點(diǎn)結(jié)論直接求解.【詳解】A選項(xiàng),,由于,故時(shí),故在上單調(diào)遞增,時(shí),,單調(diào)遞減,則在處取到極大值,在處取到極小值,由,,則,根據(jù)零點(diǎn)存在定理在上有一個(gè)零點(diǎn),又,,則,則在上各有一個(gè)零點(diǎn),于是時(shí),有三個(gè)零點(diǎn),A選項(xiàng)正確;B選項(xiàng),,時(shí),,單調(diào)遞減,時(shí),單調(diào)遞增,此時(shí)在處取到極小值,B選項(xiàng)錯(cuò)誤;C選項(xiàng),假設(shè)存在這樣的,使得為的對(duì)稱軸,即存在這樣的使得,即,根據(jù)二項(xiàng)式定理,等式右邊展開式含有的項(xiàng)為,于是等式左右兩邊的系數(shù)都不相等,原等式不可能恒成立,于是不存在這樣的,使得為的對(duì)稱軸,C選項(xiàng)錯(cuò)誤;D選項(xiàng),方法一:利用對(duì)稱中心的表達(dá)式化簡,若存在這樣的,使得為的對(duì)稱中心,則,事實(shí)上,,于是即,解得,即存在使得是的對(duì)稱中心,D選項(xiàng)正確.方法二:直接利用拐點(diǎn)結(jié)論任何三次函數(shù)都有對(duì)稱中心,對(duì)稱中心的橫坐標(biāo)是二階導(dǎo)數(shù)的零點(diǎn),,,,由,于是該三次函數(shù)的對(duì)稱中心為,由題意也是對(duì)稱中心,故,即存在使得是的對(duì)稱中心,D選項(xiàng)正確.故選:AD【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)的對(duì)稱軸為;(2)關(guān)于對(duì)稱;(3)任何三次函數(shù)都有對(duì)稱中心,對(duì)稱中心是三次函數(shù)的拐點(diǎn),對(duì)稱中心的橫坐標(biāo)是的解,即是三次函數(shù)的對(duì)稱中心三、填空題:本大題共3小題,每小題5分,共15分.12.記為等差數(shù)列的前n項(xiàng)和,若,,則________.【答案】95【解析】【分析】利用等差數(shù)列通項(xiàng)公式得到方程組,解出,再利用等差數(shù)列求和公式節(jié)即可得到答案.【詳解】因?yàn)閿?shù)列為等差數(shù)列,則由題意得,解得,則.故答案:.13.已知為第一象限角,為第三象限角,,,則_______.【答案】【解析】【分析】法一:根據(jù)兩角和與差正切公式得,再縮小的范圍,最后結(jié)合同角的平方和關(guān)系即可得到答案;法二:利用弦化切的方法即可得到答案.【詳解】法一:由題意得,因?yàn)?,,則,,又因?yàn)?,則,,則,則,聯(lián)立,解得.法二:因?yàn)闉榈谝幌笙藿?,為第三象限角,則,,,則故答案為:.14.在如圖的4×4方格表中選4個(gè)方格,要求每行和每列均恰有一個(gè)方格被選中,則共有________種選法,在所有符合上述要求的選法中,選中方格中的4個(gè)數(shù)之和的最大值是________.【答案】①.24②.112【解析】【分析】由題意可知第一、二、三、四列分別有4、3、2、1個(gè)方格可選;利用列舉法寫出所有的可能結(jié)果,即可求解.【詳解】由題意知,選4個(gè)方格,每行和每列均恰有一個(gè)方格被選中,則第一列有4個(gè)方格可選,第二列有3個(gè)方格可選,第三列有2個(gè)方格可選,第四列有1個(gè)方格可選,所以共有種選法;每種選法可標(biāo)記為,分別表示第一、二、三、四列的數(shù)字,則所有的可能結(jié)果為:,,,,所以選中的方格中,的4個(gè)數(shù)之和最大,為.故答案為:24;112【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是確定第一、二、三、四列分別有4、3、2、1個(gè)方格可選,利用列舉法寫出所有的可能結(jié)果.四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.記的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求A.(2)若,,求的周長.【答案】(1)(2)【解析】【分析】(1)根據(jù)輔助角公式對(duì)條件進(jìn)行化簡處理即可求解,常規(guī)方法還可利用同角三角函數(shù)的關(guān)系解方程組,亦可利用導(dǎo)數(shù),向量數(shù)量積公式,萬能公式解決;(2)先根據(jù)正弦定理邊角互化算出,然后根據(jù)正弦定理算出即可得出周長.【小問1詳解】方法一:常規(guī)方法(輔助角公式)由可得,即,由于,故,解得方法二:常規(guī)方法(同角三角函數(shù)的基本關(guān)系)由,又,消去得到:,解得,又,故方法三:利用極值點(diǎn)求解設(shè),則,顯然時(shí),,注意到,,在開區(qū)間上取到最大值,于是必定是極值點(diǎn),即,即,又,故方法四:利用向量數(shù)量積公式(柯西不等式)設(shè),由題意,,根據(jù)向量的數(shù)量積公式,,則,此時(shí),即同向共線,根據(jù)向量共線條件,,又,故方法五:利用萬能公式求解設(shè),根據(jù)萬能公式,,整理可得,,解得,根據(jù)二倍角公式,,又,故【小問2詳解】由題設(shè)條件和正弦定理,又,則,進(jìn)而,得到,于是,,由正弦定理可得,,即,解得,故的周長為16.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.【答案】(1)(2)【解析】【分析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義求切線方程;(2)解法一:求導(dǎo),分析和兩種情況,利用導(dǎo)數(shù)判斷單調(diào)性和極值,分析可得,構(gòu)建函數(shù)解不等式即可;解法二:求導(dǎo),可知有零點(diǎn),可得,進(jìn)而利用導(dǎo)數(shù)求的單調(diào)性和極值,分析可得,構(gòu)建函數(shù)解不等式即可.【小問1詳解】當(dāng)時(shí),則,,可得,,即切點(diǎn)坐標(biāo)為,切線斜率,所以切線方程為,即.【小問2詳解】解法一:因?yàn)榈亩x域?yàn)?,且,若,則對(duì)任意恒成立,可知在上單調(diào)遞增,無極值,不合題意;若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無極大值,由題意可得:,即,構(gòu)建,則,可知在內(nèi)單調(diào)遞增,且,不等式等價(jià)于,解得,所以a的取值范圍為;解法二:因?yàn)榈亩x域?yàn)?,且,若有極小值,則有零點(diǎn),令,可得,可知與有交點(diǎn),則,若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無極大值,符合題意,由題意可得:,即,構(gòu)建,因?yàn)閯t在內(nèi)單調(diào)遞增,可知在內(nèi)單調(diào)遞增,且,不等式等價(jià)于,解得,所以a的取值范圍為.17.如圖,平面四邊形ABCD中,,,,,,點(diǎn)E,F(xiàn)滿足,,將沿EF對(duì)折至,使得.(1)證明:;(2)求面PCD與面PBF所成的二面角的正弦值.【答案】(1)證明見解析(2)【解析】【分析】(1)由題意,根據(jù)余弦定理求得,利用勾股定理的逆定理可證得,則,結(jié)合線面垂直的判定定理與性質(zhì)即可證明;(2)由(1),根據(jù)線面垂直的判定定理與性質(zhì)可證明,建立如圖空間直角坐標(biāo)系,利用空間向量法求解面面角即可.【小問1詳解】由,得,又,在中,由余弦定理得,所以,則,即,所以,又平面,所以平面,又平面,故;【小問2詳解】連接,由,則,在中,,得,所以,由(1)知,又平面,所以平面,又平面,所以,則兩兩垂直,建立如圖空間直角坐標(biāo)系,則,由是的中點(diǎn),得,所以,設(shè)平面和平面的一個(gè)法向量分別為,則,,令,得,所以,所以,設(shè)平面和平面所成角為,則,即平面和平面所成角的正弦值為.18.某投籃比賽分為兩個(gè)階段,每個(gè)參賽隊(duì)由兩名隊(duì)員組成,比賽具體規(guī)則如下:第一階段由參賽隊(duì)中一名隊(duì)員投籃3次,若3次都未投中,則該隊(duì)被淘汰,比賽成員為0分;若至少投中一次,則該隊(duì)進(jìn)入第二階段,由該隊(duì)的另一名隊(duì)員投籃3次,每次投中得5分,未投中得0分.該隊(duì)的比賽成績?yōu)榈诙A段的得分總和.某參賽隊(duì)由甲、乙兩名隊(duì)員組成,設(shè)甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨(dú)立.(1)若,,甲參加第一階段比賽,求甲、乙所在隊(duì)的比賽成績不少于5分的概率.(2)假設(shè),(i)為使得甲、乙所在隊(duì)的比賽成績?yōu)?5分的概率最大,應(yīng)該由誰參加第一階段比賽?(ii)為使得甲、乙,所在隊(duì)的比賽成績的數(shù)學(xué)期望最大,應(yīng)該由誰參加第一階段比賽?【答案】(1)(2)(i)由甲參加第一階段比賽;(i)由甲參加第一階段比賽;【解析】【分析】(1)根據(jù)對(duì)立事件的求法和獨(dú)立事件的乘法公式即可得到答案;(2)(i)首先各自計(jì)算出,,再作差因式分解即可判斷;(ii)首先得到和的所有可能取值,再按步驟列出分布列,計(jì)算出各自期望,再次作差比較大小即可.【小問1詳解】甲、乙所在隊(duì)的比賽成績不少于5分,則甲第一階段至少投中1次,乙第二階段也至少投中1次,比賽成績不少于5分的概率.【小問2詳解】(i)若甲先參加第一階段比賽,則甲、乙所在隊(duì)的比賽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 班級(jí)學(xué)習(xí)互助小組的創(chuàng)建計(jì)劃
- 水務(wù)項(xiàng)目可行性研究報(bào)告計(jì)劃
- 研發(fā)項(xiàng)目外部專家費(fèi)用審核報(bào)銷流程管理制度
- 2024-2025學(xué)年高中生物 第六章 從雜交育種到基因工程 第1節(jié) 雜交育種與誘變育種教學(xué)設(shè)計(jì)5 新人教版必修2
- 娛樂業(yè)市場(chǎng)營銷策略指南
- 能源汽車行業(yè)智能化動(dòng)力系統(tǒng)開發(fā)方案
- 廣西北流、陸川、容縣2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析
- 環(huán)境科學(xué)中的生態(tài)評(píng)估試題集
- 《責(zé)任高于山責(zé)任在我心中》主題班會(huì)上學(xué)期
- 江西省吉安市省級(jí)九校2023-2024學(xué)年期八年級(jí)第二學(xué)期物理期中聯(lián)考試題(含答案)
- 2025年廣州市勞動(dòng)合同范本下載
- 2025年北大荒黑龍江建三江水利投資有限公司招聘筆試參考題庫附帶答案詳解
- 靈活運(yùn)用知識(shí)的2024年ESG考試試題及答案
- 國家藥品監(jiān)督管理局直屬單位招聘考試真題2024
- 遼寧省七校協(xié)作體2024-2025學(xué)年高二下學(xué)期3月聯(lián)考地理試題(原卷版+解析版)
- 基于三新背景下的2025年高考生物二輪備考策略講座
- 小學(xué)教師招聘-《教育學(xué)》(小學(xué))押題試卷1
- 醫(yī)療機(jī)構(gòu)自殺風(fēng)險(xiǎn)評(píng)估與預(yù)防措施
- 全國自考《銀行會(huì)計(jì)學(xué)》2024年7月《銀行會(huì)計(jì)學(xué)》自學(xué)考試試題及答案
- 拔高卷-2021-2022學(xué)年七年級(jí)語文下學(xué)期期中考前必刷卷(福建專用)(考試版)
- CNAS-SC175:2024 基于ISO IEC 2000-1的服務(wù)管理體系認(rèn)證機(jī)構(gòu)認(rèn)可方案
評(píng)論
0/150
提交評(píng)論