浙江省湖州市天略外國(guó)語(yǔ)學(xué)校2024-2025學(xué)年普通高校招生全國(guó)統(tǒng)考適應(yīng)性(一)數(shù)學(xué)試題試卷含解析_第1頁(yè)
浙江省湖州市天略外國(guó)語(yǔ)學(xué)校2024-2025學(xué)年普通高校招生全國(guó)統(tǒng)考適應(yīng)性(一)數(shù)學(xué)試題試卷含解析_第2頁(yè)
浙江省湖州市天略外國(guó)語(yǔ)學(xué)校2024-2025學(xué)年普通高校招生全國(guó)統(tǒng)考適應(yīng)性(一)數(shù)學(xué)試題試卷含解析_第3頁(yè)
浙江省湖州市天略外國(guó)語(yǔ)學(xué)校2024-2025學(xué)年普通高校招生全國(guó)統(tǒng)考適應(yīng)性(一)數(shù)學(xué)試題試卷含解析_第4頁(yè)
浙江省湖州市天略外國(guó)語(yǔ)學(xué)校2024-2025學(xué)年普通高校招生全國(guó)統(tǒng)考適應(yīng)性(一)數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省湖州市天略外國(guó)語(yǔ)學(xué)校2024-2025學(xué)年普通高校招生全國(guó)統(tǒng)考適應(yīng)性(一)數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則A. B. C. D.2.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.3.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”4.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長(zhǎng)為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.5.在邊長(zhǎng)為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.6.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.7.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.8.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.9.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.10.已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.11.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點(diǎn)相同,則雙曲線漸近線方程為()A. B.C. D.12.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿足(為虛數(shù)單位),則的值為_______.14.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時(shí),觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測(cè),A﹣B=_____.15.設(shè)全集,,,則______.16.已知,,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)18.(12分)的內(nèi)角、、所對(duì)的邊長(zhǎng)分別為、、,已知.(1)求的值;(2)若,點(diǎn)是線段的中點(diǎn),,求的面積.19.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè),且當(dāng)時(shí),不等式有解,求實(shí)數(shù)的取值范圍.22.(10分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識(shí),主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對(duì)實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡(jiǎn),防止簡(jiǎn)單問題出錯(cuò),造成不必要的失分.2.B【解析】

先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對(duì)應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對(duì)函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.3.B【解析】

通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.4.C【解析】

設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長(zhǎng)為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來(lái)求解出線段長(zhǎng),屬于中檔題.5.C【解析】

根據(jù)平面向量基本定理,用來(lái)表示,然后利用數(shù)量積公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.6.A【解析】

先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.7.D【解析】

依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.8.C【解析】

設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.9.D【解析】

建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).10.D【解析】

根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因?yàn)闉榈妊切?,,所以?,又,,解得,所以雙曲線的漸近線方程為,故選:D本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.11.A【解析】

由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點(diǎn)相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的求法,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.12.C【解析】

根據(jù)題意,知當(dāng)時(shí),,由對(duì)稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對(duì)稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對(duì)稱性的應(yīng)用,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由虛數(shù)單位的性質(zhì)結(jié)合復(fù)數(shù)相等的條件列式求得,的值,則答案可求.【詳解】解:由,,,所以,得,..故答案為:.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查虛數(shù)單位的性質(zhì),屬于基礎(chǔ)題.14.【解析】

觀察知各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),據(jù)此計(jì)算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.本題考查了歸納推理,意在考查學(xué)生的推理能力.15.【解析】

先求出集合,,然后根據(jù)交集、補(bǔ)集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.本題主要考查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.16.【解析】

由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)①詳見解析②期望;方差【解析】

(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問題,屬于基礎(chǔ)題.18.(1)(2)【解析】

(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡(jiǎn)得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即即在中,,所以(2)因?yàn)辄c(diǎn)是線段的中點(diǎn),所以兩邊平方得由得整理得,解得或(舍)所以的面積本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.19.(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個(gè)根,可轉(zhuǎn)化為有3個(gè)根,即與有3個(gè)不同交點(diǎn),利用導(dǎo)數(shù)作出的圖象即可.【詳解】(1)令,則,當(dāng)時(shí),,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個(gè)零點(diǎn),即有3個(gè)根,顯然0不是其根,所以有3個(gè)根,令,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實(shí)數(shù)的取值范圍為.本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點(diǎn)個(gè)數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.20.(1);(2)【解析】

(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項(xiàng)公式,進(jìn)而求出的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求數(shù)列的前項(xiàng)和.【詳解】解:(1),,是首項(xiàng)為,公比為的等比數(shù)列.所以,.(2).本題考查了由數(shù)列的遞推公式求通項(xiàng)公式,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和的問題,屬于中檔題.21.(1);(2).【解析】

(1)通過分類討論去掉絕對(duì)值符號(hào),進(jìn)而解不等式組求得結(jié)果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構(gòu)造不等式求得結(jié)果.【詳解】(1)當(dāng)時(shí),可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實(shí)數(shù)的取值范圍是.本題考查絕

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論