山東省德州市躍華中學(xué)2024-2025學(xué)年高三下學(xué)期期中考試數(shù)學(xué)試題(理解析)試題含解析_第1頁
山東省德州市躍華中學(xué)2024-2025學(xué)年高三下學(xué)期期中考試數(shù)學(xué)試題(理解析)試題含解析_第2頁
山東省德州市躍華中學(xué)2024-2025學(xué)年高三下學(xué)期期中考試數(shù)學(xué)試題(理解析)試題含解析_第3頁
山東省德州市躍華中學(xué)2024-2025學(xué)年高三下學(xué)期期中考試數(shù)學(xué)試題(理解析)試題含解析_第4頁
山東省德州市躍華中學(xué)2024-2025學(xué)年高三下學(xué)期期中考試數(shù)學(xué)試題(理解析)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省德州市躍華中學(xué)2024-2025學(xué)年高三下學(xué)期期中考試數(shù)學(xué)試題(理解析)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.2.設(shè),,則()A. B.C. D.3.在直角梯形中,,,,,點為上一點,且,當(dāng)?shù)闹底畲髸r,()A. B.2 C. D.4.若,則實數(shù)的大小關(guān)系為()A. B. C. D.5.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.66.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函數(shù),,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.8.已知,復(fù)數(shù),,且為實數(shù),則()A. B. C.3 D.-39.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.10.已知向量,且,則m=()A.?8 B.?6C.6 D.811.已知集合則()A. B. C. D.12.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則實數(shù)m的值是________.14.已知復(fù)數(shù),其中為虛數(shù)單位,則的模為_______________.15.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個等比數(shù)列的公比為_____.16.在中,角A,B,C的對邊分別為a,b,c,且,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學(xué)和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認(rèn)為“手機支付族”與“性別”有關(guān)?(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82818.(12分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)為,求的值.19.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.20.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當(dāng)時,求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.21.(12分)已知函數(shù),當(dāng)時,有極大值3;(1)求,的值;(2)求函數(shù)的極小值及單調(diào)區(qū)間.22.(10分)已知直線與橢圓恰有一個公共點,與圓相交于兩點.(I)求與的關(guān)系式;(II)點與點關(guān)于坐標(biāo)原點對稱.若當(dāng)時,的面積取到最大值,求橢圓的離心率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.2.D【解析】

由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因為,,則,且,所以,,又,即,則,即,故選:D.本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.3.B【解析】

由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設(shè),則,即,又因為所以,所以,當(dāng)時,等號成立.所以.故選:B.本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.4.A【解析】

將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.5.B【解析】

根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B本題考查正三棱柱側(cè)面積的計算以及三視圖的認(rèn)識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.6.A【解析】

計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.7.B【解析】

由題意可將方程轉(zhuǎn)化為,令,,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因為,當(dāng)時,,所以在,上單調(diào)遞增,且時,.當(dāng)時,,在上單調(diào)遞減,且時,.所以當(dāng)時,取最大值,當(dāng),有一根.所以恰有兩個不相等的實根,所以.故選:B.本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.8.B【解析】

把和代入再由復(fù)數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數(shù),所以,解得.本題考查復(fù)數(shù)的概念,考查運算求解能力.9.A【解析】

根據(jù)題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.本題考查了常見幾何體的三視圖和體積計算,屬于基礎(chǔ)題.10.D【解析】

由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.本題考查平面向量的坐標(biāo)運算,考查向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.11.B【解析】

解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.12.A【解析】

將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.本題考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運算.14.【解析】

利用復(fù)數(shù)模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.本題考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.15.4【解析】

根據(jù)等差數(shù)列關(guān)系,用首項和公差表示出,解出首項和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4此題考查等差數(shù)列基本量的計算,涉及等比中項,考查基本計算能力.16.【解析】

利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】

(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實際付款元,,則的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認(rèn)為“手機支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設(shè)實際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18.(1)(2)【解析】

(1)依題意,任意角的三角函數(shù)的定義可知,,進(jìn)而求出.在利用余弦的和差公式即可求出.(2)根據(jù)鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)是,得出,進(jìn)而得出,利用正弦的和差公式即可求出,結(jié)合為銳角,為鈍角,即可得出的值.【詳解】解:因為銳角的終邊與單位圓交于點,點的縱坐標(biāo)是,所以由任意角的三角函數(shù)的定義可知,.從而.(1)于是.(2)因為鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)是,所以,從而.于是.因為為銳角,為鈍角,所以從而.本題本題考查正弦函數(shù)余弦函數(shù)的定義,考查正弦余弦的兩角和差公式,是基礎(chǔ)題.19.(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設(shè)O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對邊平行,或是構(gòu)造三角形中位線.20.;證明見解析.【解析】

當(dāng)時,集合共有個子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當(dāng)時,集合共有個子集,所以;①當(dāng)時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設(shè)當(dāng)時,存在有序集合組滿足題意,且,則當(dāng)時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.本題考查集合的自己個數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.21.(1);(2)極小值為,遞減區(qū)間為:,遞增區(qū)間為.【解析】

(1)由題意得到關(guān)于實數(shù)的方程組,求解方程組,即可求得的值;(2)結(jié)合(1)中的值得出函數(shù)的解析式,即可利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間和極小值.【詳解】(1)由題意,函數(shù),則,由當(dāng)時,有極大值,則,解得.(2)由(1)可得函數(shù)的解析式為,則,令,即,解得,令,即,解得或,所以函數(shù)的單調(diào)減區(qū)間為,遞增區(qū)間為,當(dāng)時,函數(shù)取得極小值,極小值為.當(dāng)時,有極大值3.本題主要考查了函數(shù)的極值的概念,以及利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間和極值,其中解答中熟記函數(shù)的極值的概念,以及函數(shù)的導(dǎo)數(shù)與原函數(shù)的關(guān)系,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.22.(Ⅰ)(II)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論