




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考下臺(tái)下——各我2008中考與敗
(閱讀理解題)
一、學(xué)問網(wǎng)絡(luò)梳理
閱讀理解題是近幾年新出現(xiàn)的一種新題型,這種題型特點(diǎn)顯明、內(nèi)容
豐富、超越常規(guī),源于課本,高于課本,不僅考查學(xué)生的閱讀實(shí)力,而且
綜合考查學(xué)生的數(shù)學(xué)意識(shí)和數(shù)學(xué)綜合應(yīng)用實(shí)力,尤其側(cè)重于考查學(xué)生的數(shù)
學(xué)思維實(shí)力和創(chuàng)新意識(shí),此類題目能夠幫助學(xué)生實(shí)現(xiàn)從仿照到創(chuàng)建的思維
過程,符合學(xué)生的認(rèn)知規(guī)律。閱讀理解題一般由兩部分組成:一是閱讀材
料;二是考查內(nèi)容.它要求學(xué)生依據(jù)閱讀獲得的信息回答問題.供應(yīng)的閱讀
材料主要包括:一個(gè)新的數(shù)學(xué)概念的形成和應(yīng)用過程,或一個(gè)新數(shù)學(xué)公式
的推導(dǎo)與應(yīng)用,或供應(yīng)新聞背景材料等.考查內(nèi)容既有考查基礎(chǔ)的,又有考
查自學(xué)實(shí)力和探究實(shí)力等綜合素養(yǎng)的.
這類題目的結(jié)構(gòu)一般為:給出一段閱讀材料,學(xué)生通過閱讀,將材料
所給的信息加以搜集整理,在此基礎(chǔ)上,依據(jù)題目的要求進(jìn)行推理解答。
涉和到的數(shù)學(xué)學(xué)問許多,幾乎涉和全部中考內(nèi)容。
閱讀理解題是近幾年頻頻出現(xiàn)在中考試卷中的一類新題型,不僅考查
學(xué)生的閱讀實(shí)力,而且綜合考查學(xué)生的數(shù)學(xué)意識(shí)和數(shù)學(xué)綜合應(yīng)用實(shí)力,尤
其是側(cè)重于考查學(xué)生的數(shù)學(xué)思維實(shí)力和創(chuàng)新意識(shí),此類題目能夠幫助考生
實(shí)現(xiàn)從仿照到創(chuàng)建的思想過程,符合學(xué)生的認(rèn)知規(guī)律,是中考的熱點(diǎn)題目
之一,今后的中考試題有進(jìn)一步加強(qiáng)的趨勢。
題型1考杳解題思維過程的閱讀理解題
言之有據(jù),言必有據(jù),這是正確解題的關(guān)鍵所在,是提高數(shù)學(xué)索養(yǎng)的
前提。數(shù)學(xué)中的基本定理、公式、法則和數(shù)學(xué)思想方法都是理解數(shù)學(xué)、學(xué)
習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的基礎(chǔ),這類試題就是為檢測解題者理解解題過程、駕
馭基本數(shù)學(xué)思想方法和辨別是非的實(shí)力而設(shè)置的。
題型2考查訂正錯(cuò)誤挖病根實(shí)力的閱讀理解題
理解基本概念不是拘泥于形式的死記硬背,而是要把握概念的內(nèi)涵或
實(shí)質(zhì),理解概念間的相互聯(lián)系,形成學(xué)問脈絡(luò),從而整體地獲得學(xué)問。這
類試題意在檢測解題者對學(xué)問的理解以和相識(shí)問題和解決問題的實(shí)力。
題型3考查歸納、探究規(guī)律實(shí)力的閱讀理解題
對材料信息的加工提練和運(yùn)用,對規(guī)律的歸納和發(fā)覺能反映出一個(gè)人
的應(yīng)用數(shù)學(xué)、發(fā)展數(shù)學(xué)和進(jìn)行數(shù)學(xué)創(chuàng)新的意識(shí)和實(shí)力。這類試題意在檢測
解題者的數(shù)學(xué)化實(shí)力以和駕馭數(shù)學(xué)的創(chuàng)新意識(shí)和才能。
題型4考查駕馭新學(xué)問實(shí)力的閱讀理解題
命題者給定一個(gè)生疏的定義或公式或方法,讓你去解決新問題,這類
考題能考查解題者自學(xué)實(shí)力和閱讀理解實(shí)力,能考查解題者接收、加工和
利用信息的實(shí)力。
解閱讀新學(xué)問,應(yīng)用新學(xué)問的閱讀理解題時(shí),首先做到仔細(xì)閱讀題目
中介紹的新學(xué)問,包括定義、公式、表示方法和如何計(jì)算等,并且正確理
解引進(jìn)的新學(xué)問,讀懂范例的應(yīng)用;其次,依據(jù)介紹的新學(xué)問、新方法進(jìn)
行運(yùn)用,并與范例的運(yùn)用進(jìn)行比較,防止出錯(cuò)。
第一課時(shí)代數(shù)閱讀題
[目標(biāo)導(dǎo)學(xué)]
此類閱讀理解題一般以數(shù)式的運(yùn)算、方程(不等式)的計(jì)算以和函數(shù)
學(xué)問為背景,考查相關(guān)的學(xué)問;內(nèi)容可以包括定義新思路、新方法,這主
要是考查學(xué)生的理解應(yīng)變實(shí)力,也可以是供應(yīng)全新的的閱讀材料,介紹新
學(xué)問,用來考查學(xué)生的學(xué)以致用的實(shí)力。
[例題精析]
例1(。7資陽)已知坐標(biāo)平面上的機(jī)器人接受指令"反,A]ff(a>0,
00</lvl8(r)后的行動(dòng)結(jié)果為:在原地順時(shí)針旋轉(zhuǎn)力后,再向面對方向
沿直線行走a.若機(jī)器人的位置在原點(diǎn),面對方向?yàn)閥軸的負(fù)半軸,則它
完成一次指令[2,60°]后,所在位置的坐標(biāo)為(D)
A.(-1,-VS)B.(-1,6)C.(G,-1)
D.(?>/5,-1)
例2(07臺(tái)州)為確保信息平安,信息須要加密傳輸,發(fā)送方由明文1密
文(加密),接收方由密文->明文(解密).已知加密規(guī)則為:明文a,b,c
對應(yīng)的密文。+1,必+4,3c+9.例如明文1,2,3對應(yīng)的密文2,8,18.假
如接收方收到密文7,18,15,則解密得到的明文為(B)
A.4,5,6B.6,7,2C.2,6,7D.7,2,6
例3.(03無錫市)讀一讀:式子“1+2+3+4+5+……+100”表示從
1起先的100個(gè)連續(xù)自然數(shù)的和.山于上述式子比較長,書寫也不便利,
100
士〃
為了簡便起見,我們可將“1+2+3+4+5+……+100”表示為I,
這里是求和符號(hào).例如:“1+3+5+7+9+……+99"(即從
50
Z(2〃-1)
1起先的100以內(nèi)的連續(xù)奇數(shù)的和)可表示為I;又如“N+23
10
+33+43+53+634-73+83+93+103W可表示為1.同學(xué)們,通過對
以上材料的閱讀,請解答下列問題:
①2+4+6+8+10+……+100(即從2起先的100以內(nèi)的連續(xù)偶
數(shù)的和)用求和符號(hào)可表示為;
②計(jì)算:I=(填寫最終的計(jì)算結(jié)果).
分析:本題就是先給讀者供應(yīng)全新的的閱讀材料,介紹了求和符號(hào)
的意義,這是學(xué)生沒有遇到過的新學(xué)問,只有通過閱讀理解它的意
義,才能正確解答下面有關(guān)問題。求和符號(hào)的下,面和上面的數(shù)字分別表示
求和加數(shù)的首、尾數(shù)字序數(shù),求和符號(hào)右邊的代數(shù)式表示求和加數(shù)的性質(zhì)。
50
解:(1)±2〃;(2)50o
n-1
[解題啟示]
本題是一道在初中和中學(xué)學(xué)問的連接點(diǎn)上命題的代數(shù)閱讀理解題,學(xué)
生只有正確閱讀理解求和符號(hào)的意義、書寫格式等學(xué)問,才能遷移
運(yùn)用,再發(fā)散開放。
例4.(05陜西?。╅喿x:我們知道,在數(shù)軸上,x=i表示一個(gè)點(diǎn).而在
平面直角坐標(biāo)系中,*=1表示一條直線;我們還知道,以二元一次方方程
2.y+l=0的全部解為坐標(biāo)的點(diǎn)組成的圖形就是一次函數(shù)y=2x+l的圖象,
它也是一條直線,如圖2-4?10可以得出:直線x=l與直線)=2A+1的交點(diǎn)
P的坐標(biāo)(1,3)就是方程組[二;
在直角坐標(biāo)系中,尤力表示一個(gè)平面區(qū)域,即直線以和它左側(cè)的部
分,如圖2-4-11;>2A+1也表示一個(gè)平面區(qū)域,即直線"2戶】以和它下
方的部分,如圖2-4-12.回答下列問題:在直角坐標(biāo)系(圖2-4-13)中,
(1)用作圖象的方法求出方程組,的解.
y=-2x+2
x>-2
(2)用陰影表示”-2n2,所圍成的區(qū)域.
y>0
yy
=2x+#
分析:通過閱讀本題所供應(yīng)的材料,我們要明白兩點(diǎn):方程組的解與兩
直線交點(diǎn)坐標(biāo)的關(guān)系;不等式組的解在坐標(biāo)中區(qū)域的表示方法.
解:(1)如圖2-4-13,在坐標(biāo)中分別作出直線片-2和直線
廣-2r+2,這兩條直線的交點(diǎn)P(-2,6),貝二2是方程組卜的
[y=6[y=-2x+2
解.
例5(05鎮(zhèn)江市)閱讀下列一段文字,然后解答問題.
修建潤揚(yáng)大橋,途經(jīng)鎮(zhèn)江某地,需搬遷一批農(nóng)戶,為了節(jié)約土地資源
和愛護(hù)環(huán)境,政府確定統(tǒng)一規(guī)劃建房小區(qū),并且投資一部分資金用于小區(qū)
建設(shè)和補(bǔ)償?shù)秸?guī)劃小區(qū)建房的搬遷農(nóng)戶.建房小區(qū)除建房占地外,其余
部分政府每千方米投資10。元進(jìn)行小區(qū)建設(shè);搬遷農(nóng)戶在建房小區(qū)建房,
每戶占地100平方米,政府每戶補(bǔ)償4萬元,此項(xiàng)政策,吸引了搬遷農(nóng)
戶到政府規(guī)劃小區(qū)建房,這時(shí)建房占地面積占政府規(guī)劃小區(qū)總面積的
20%.
政府乂激勵(lì)非搬遷戶到規(guī)劃小區(qū)建房,每戶建房占地12。平方米,但
每戶需向政府交納土地運(yùn)用費(fèi)2.8萬元,這樣又有20戶非搬遷戶申請加
入.此項(xiàng)政策,政府不但可以收取土地運(yùn)用費(fèi),同時(shí)還可以增加小區(qū)建房占
地面積,從而削減小區(qū)建設(shè)的投資費(fèi)用.若這20戶非搬遷戶到政府規(guī)劃小
區(qū)建房后,此時(shí)建房占地面積占政府規(guī)劃規(guī)劃小區(qū)總面積的40%.
(1)設(shè)到政府規(guī)劃小區(qū)建房的搬遷農(nóng)戶為x戶,政府規(guī)劃小區(qū)總面積為
V平方米.
可得方程組解得
(2)在20戶非搬遷戶加?入建房用廠請測算政府共需投資
萬元
在20戶非搬遷戶加入建房后,請測算政府將收取的土地運(yùn)用費(fèi)投
入后,還需投資萬元.
(3)設(shè)非搬遷戶申請加入建房并被政府批準(zhǔn)的有z戶,政府將收取的土
地運(yùn)用費(fèi)投入后,還需投資。萬元.①求。與z的函數(shù)關(guān)系式;②當(dāng)p
不高于140萬元,而又使建房占地面積不超過規(guī)劃小區(qū)總面積的
35%時(shí),那么政府可以批準(zhǔn)多少戶非搬遷戶加入建房?
分析:本題通過文字給出了大量的數(shù)據(jù)信息廠答題時(shí)要仔細(xì)審題,順
理各種數(shù)據(jù)間關(guān)系,建立方程、函數(shù)和不等式模型使問題得以解決。
l()0.r+20xl20=40%y
x=24
[),=12000
(2)192
112
(3)①P=24x4-2.8z+(120-24-1.2z)
=192-4z.
192-4z?140
②由題意得J
2400+120z?35%xl20CO
解得《.'.13gijz15.
z,,15.
政府可批準(zhǔn)13、14或15戶非搬遷戶加入建房.
[解題啟示]
本題實(shí)質(zhì)是方程組、函數(shù)和不等式組綜合應(yīng)用題,以閱讀理解型問題
形式出現(xiàn),突出了過程學(xué)問的考查。
[課堂訓(xùn)練]
-二基礎(chǔ)訓(xùn)練:
1.(05浙江)在日常生活中如取款、上網(wǎng)等都須要密碼.有一種用“因
式分解”法產(chǎn)生的密碼,便利記憶.原理是:如對于多項(xiàng)式-->」,
因式分解的結(jié)果是(-y)(x+),)(/+/,若取k9,產(chǎn)9時(shí),則各個(gè)因
式的值是:(X一列=0,(x+j)=18,(A2+y2)=162,于是就可以把
“018162”作為一個(gè)六位數(shù)的密碼.對于多項(xiàng)式41—獷,取貨10,
產(chǎn)10時(shí),用上述方法產(chǎn)生的密碼是:(寫出一個(gè)即可).
2.(03青島)九年義務(wù)教化三年制初級中學(xué)教科書《代數(shù)》第三冊第52
頁的例2是這樣的:“解方程--6/+5=0”.這是一個(gè)一元四次方程,
依據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)-=y,那么/=),?,于是原方
程可變?yōu)?6),+5=。①,解這個(gè)方程得:yi=l,y2=5.當(dāng)y=1
時(shí),x2=1,/.x=±1;當(dāng)y=5時(shí),x2=5,x=±V5o所以原方
程有四個(gè)根:Xi=1,x2=-l,x3=V5,x4=-^5o
⑴在由原方程得到方程①的過程中,利用法達(dá)到降次的目的,
體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
⑵解方程(丁-寸_467)-12=0時(shí),若設(shè)y=x2-x,則原方程可化
為.
3.(攀枝花)先閱讀下列材料,再解答后面的問題
材料:一般地,n個(gè)相同的因數(shù)。相乘:”記為九如23=8,此時(shí),
M、
3叫做以2為底8的對數(shù),記為log?8(即log28=3)。一般地,若
/=力(?!?且。=1力>0),貝I」n叫做以。為底b的對數(shù),記為
log,*(即log,*=〃).如34=81,則4叫做以3為底81的對數(shù),記為
k)ga81(即唾381=4)o
問題:(1)計(jì)算以下各對數(shù)的值
log,4=log216=log,64=
(2)視察(1)中三數(shù)4、16、64之間滿意怎樣的關(guān)系式?
log24>log216>log264之間又滿意怎樣的關(guān)系式?
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?
log”M+log”N=(6/>0且〃w1,M>0,N>0)
依據(jù)騫的運(yùn)算法則:a-i以和對數(shù)的含義證明上述結(jié)
論。
二.拓展訓(xùn)練:
1.(04十堰市)先閱讀理解下列例題,再按例題解一元二次不等式:
6x2-x-2>0
解:把6/-工一2分解因式,得6/7一2=(3x-2)(2x-l)
又6/-工-2>0,所以(3x-2)(2x-l)>0
山有理數(shù)的乘法法則”兩數(shù)相乘,同號(hào)得正“有
(1)?”2>0或⑵產(chǎn)-2<0
o
解不等式組(1)得x>:
解不等式組(2)得x<-1
0I
所以(3x—2)(2x-l)>。的解集為x>;或x<-i
作業(yè)題:①求分式不等式沁〈。的解集。
2%-3
②通過閱讀例題和作業(yè)題①,你學(xué)會(huì)了什么學(xué)問和方法?
2.(04大連)閱讀材料,解答問題:
材料:“小聰設(shè)計(jì)的一個(gè)電子嬉戲是:一電
子跳蚤從這PJ-3,9)起先,按點(diǎn)的橫坐標(biāo)
依次增加1的規(guī)律,在拋物線),=/上向右跳
動(dòng),得到點(diǎn)P2、P3、P,、P5……(如圖12所
示)。過Pl、P2、P3分別作P1H1、P2H2、P3H3
垂直于X軸,垂足為H]、比、H3,則
SNgp、-s梯形巴丹也褐-s悌形6%也八一s梯形5日出遍
=-(9+1)x2--(9+4)x1-1(4+1)x1
222
=1
即ZkPlP2P3的面積為1。
問題:
⑴求四邊形P】P2P3P4和P2P3P4P5的面積(要求:寫出其中一個(gè)四邊形面積
的求解過程,另一個(gè)干脆寫出答案);
⑵猜想四邊形P「FnPn+Fn+2的面積,并說
明理由(利用圖13)
⑶若將拋物線y=r改為拋物線
),=/+法+C,其它條件不變,猜想四邊形
Pn_FnPn+Fn+2的面積(干脆寫出答案)
圖13
[課后訓(xùn)練]
一.基礎(chǔ)訓(xùn)練:
1.(03青島)探究數(shù)字“黑洞”:“黑洞”原指特別驚奇的天體,它體
積小,密度大,吸引力強(qiáng),任何物體到了它那里都別想再“爬”出來.無
獨(dú)有偶,數(shù)字中也有類似的“黑洞”,滿意某種條件的全部數(shù),通過
一種運(yùn)算,都能被它“吸”進(jìn)去,無一能逃脫它的魔掌.譬如:隨意
找一個(gè)3的倍數(shù)的數(shù),先把這個(gè)數(shù)的每一個(gè)數(shù)位上的數(shù)字都立方,再
相加,得到一個(gè)新數(shù),然后把這個(gè)新數(shù)的每一個(gè)數(shù)位上的數(shù)字再立方、
求和,…,重復(fù)運(yùn)算下去,就能得到一個(gè)固定的數(shù)T=,
我們稱它為數(shù)字“黑洞”.
T為何具有如此魔力?通過仔細(xì)的視察、分析,你肯定能發(fā)覺它的奇妙!
2.先閱讀下列材料,然后解答題后的問題.
材料:從A、B、C三人中選擇取二人當(dāng)代表,有A和B、A和C、
B和C三種不同的選法,抽象成數(shù)學(xué)模型是:從3個(gè)元素中選取2個(gè)元
素組合,記作C;=^^=3.
2x1
一般地,從,”個(gè)元素中選取〃個(gè)元素組合,記作
(1_(,〃-〃+1)
'其n(n-l)(n-2)L3x2x1,
問題:從6個(gè)人中選取4個(gè)人當(dāng)代表,不同的選法有種.
3.(2003年廣西壯族自治區(qū)中考題)閱讀下列一段話,并解決后面
的問題.
視察下面一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于2.
一般地,假如一列數(shù)等于同一個(gè)常數(shù),這一列數(shù)就叫做等比數(shù)列,這個(gè)
常數(shù)叫做等比數(shù)列的公比.
(1)等比數(shù)列5,-15,45,……的第4項(xiàng)是.
(2)假如一列數(shù)《,的,出,%,……是等比數(shù)列,且公比為夕,那么
依據(jù)規(guī)定,有%=q,%=,h幺=q、"=q、LL
qa.丹丹
所以%="聞,%=%q=(6q)q=/4=&q=(4/)q=qq'LL
q,=(用4和,/的代數(shù)式表示)
(3)一等比數(shù)列的第2項(xiàng)是10,第3項(xiàng)是20,求它的第1項(xiàng)與第4項(xiàng).
4(07甘肅白銀等3市)閱讀下邊一元二次方程求根公式的兩種推導(dǎo)方法:
方法一:教材中方法方法二:
2
ar+bx+c=,/a^+bx+c=09
/.4a2A2+4aZ7A+4ac=0,
“(1+2)2二2二生
配期可得:4a(2ax+b)2=〃-4ac.
(1+T-)-=;-;當(dāng)時(shí),
2a4a2
2ax+b=±\Jb2-4ac,
2ax=-b±\]b2-4ac.
2
當(dāng)-人-金小川時(shí),,-b±x/b-4ac
>?X—?
2a
請回答下列問題:
(1)兩種方法有什么異同?你認(rèn)為哪個(gè)方法好?
(2)說說你有什么感想?
二.拓展訓(xùn)練:
1.(03青島)在抗擊“非典”的斗爭中,某市依據(jù)疫情的發(fā)展?fàn)顩r,確定
全市中、小學(xué)放假兩周,以切實(shí)保障廣闊中、小學(xué)生的平安.騰飛中
學(xué)初三(1)班的全體同學(xué)在自主完成學(xué)習(xí)任務(wù)的同時(shí),不忘關(guān)切同學(xué)
們的安危,兩周內(nèi)全班每兩個(gè)同學(xué)都通過一次電話,相互勉勵(lì),共同
提高.假如該班有56名同學(xué),那么同學(xué)們之間共通了多少次電話?
為解決該問題,我們可把該班人數(shù)n與通電話次數(shù)s間的關(guān)系用下列
s=65=10$=15
⑴若把n作為點(diǎn)的橫坐標(biāo),s作為縱坐標(biāo),依據(jù)上述模型中的數(shù)據(jù),
在給出的平面直角坐標(biāo)系中,描出相應(yīng)各點(diǎn),并用平滑的曲線連接起來;
⑵依據(jù)日中各點(diǎn)的排列規(guī)律,猜一猜上述各點(diǎn)會(huì)不會(huì)在某一函數(shù)的圖
像上?假如在,求出該函數(shù)的解析式;
⑶求該班56名同學(xué)間共通了多少次電
話.
2(04煙臺(tái))先閱讀下面的材料,然后解答問題:
在一條直線上有依次排列的雙尸>1)臺(tái)機(jī)床在工作,我們要設(shè)置一個(gè)零件供
應(yīng)站P,使這n臺(tái)機(jī)床到供應(yīng)站P的距離總和最小,要解決這個(gè)問題,先
“退”到比較簡潔的情形:
如圖1所示,假如直線上有2臺(tái)機(jī)床時(shí),很明顯設(shè)在A1和A?之間的任何
地方都行,因?yàn)榧缀鸵宜叩木嚯x之和等于A1到A2的距離。
5p
甲1-
圖1
如圖2所示,假如直線上有3臺(tái)機(jī)床時(shí),不難推斷,供應(yīng)站設(shè)在中間一臺(tái)
機(jī)床A2處最合適,因?yàn)榧偃鏟放在A2處,甲和丙所走的距離之和恰好為
A1和A3的距離,而假如把P放在別處,例如D處,那么甲和丙所走的距
離之和仍是A1到A3的距離,可是乙還得走從A?到D的這一段,這是多
出來的,因此P放在A2處是最佳選擇。
——A■■「DA■
甲乙丙
圖2
不難知道,假如直線上有4臺(tái)機(jī)床,P應(yīng)設(shè)在第2臺(tái)與第3臺(tái)之間的任何
地方;有5臺(tái)機(jī)床,P應(yīng)設(shè)在第3臺(tái)位置。
問題(1):有n臺(tái)機(jī)床時(shí),P應(yīng)設(shè)在何處?
問題(2):依據(jù)問題(1)的結(jié)論,求區(qū)一咄”2中一渺…中-617|的最
小值。
3(07安徽蕪湖)閱讀以下材料,并解答以下問題.
“完成一件事有兩類不同的方案,在第一類方案中有m種不同的方法,在
其次類方案中有n種不同的方法.那么完成這件事共有N=m+n種不同
的方法,這是分類加法計(jì)數(shù)原理;完成一件事須要兩個(gè)步驟,做第一步有m
種不同的方法,做其次步有n種不同的方法.那么完成這件事共有
N=mxn種不同的方法,這就是分花垂.法.計(jì)數(shù)原理.”如完成沿圖1所
示的街道從A點(diǎn)動(dòng)身向6點(diǎn)行進(jìn)這件事(?規(guī).定必.露包北走或向東走),會(huì)
有多種不同的走法,其中從Z點(diǎn)動(dòng)身到某些交叉點(diǎn)的走法數(shù)已在圖2填出.
⑴依據(jù)以上原理和圖.2的提示,算出從Z動(dòng)身到達(dá)其余交叉點(diǎn)的走法數(shù),
將數(shù)字填入圖2的空圓中,并回答從A點(diǎn)動(dòng)身到3點(diǎn)的走法共有多少
種?
⑵運(yùn)用適當(dāng)?shù)脑砗头椒ㄋ愠鰪?點(diǎn)動(dòng)身到達(dá)夕點(diǎn),并禁止通過交叉點(diǎn)
。的走法有多少種?
(3)現(xiàn)由于交叉點(diǎn)C道路施工,禁止通行.求如任選一種走法,從A點(diǎn)
動(dòng)身能順當(dāng)開車到達(dá)夕點(diǎn)(無返回)概率是多少?
其次課時(shí)幾何閱讀題
[目標(biāo)導(dǎo)學(xué)]
此類閱讀理解題包括新學(xué)問定義的閱讀、理解和應(yīng)用,幾何量變更后
的規(guī)律探究,幾何計(jì)算和證明過程的推斷與推理等。
[例題精析]
例1.閱讀下列語句:
(1)響應(yīng)中心號(hào)召,開發(fā)大西南!
(2)“法輪功”是邪教.
(3)若『=1,貝l」X=l.
(4)臺(tái)灣是中華人民共和國不行分割的領(lǐng)土。
(5)兩直線平行,同位角相等。
在上述語句中,屬于真命題的句子是笫()句。
分析:命題是推斷一件事情的句子。而真命題是題設(shè)成立能推出結(jié)論肯
定正確的命題。
解:屬于真命題的句子是第((2)、(4)、(5))句。
[解題啟示]
此題主要是考查真命題的概念。推斷是否真命題首先看是否是命題,再推
斷其真假性。
例2.(04廣西玉林)閱讀下列材料,并解決后面的問題.
在銳角4ABC中,/A、NB、NC的對邊分別是a、b、c.過A作
AD_LBC于D(如圖),則sinB=絲,sinc=^
cb
AD=csinB,AD=bsinC,于是csinB=bsinC,
/_=,.同理有,=,_,,-=上
sinBsinCsinCsinAsinAsinB
/.(l_h_c.................................(*)
sinAsinRsinC
即:在一個(gè)三角形中,各邊和它所對角的正弦的比相等.
(1)在銳角三角形中,若已知三個(gè)元素a、b、ZA,運(yùn)用上述結(jié)論
(*)和有關(guān)定理就可以求出其余三個(gè)未知元素c、NB、ZC,請你依據(jù)
下列步驟填空,完成求解過程:
第一步,由條件--->
向上,隨后貨輪以28.4海里/時(shí)的速度按北偏東45“的方
向航行,半小時(shí)后到達(dá)B處,此時(shí)又測得燈塔A在貨輪的北偏西70。的方
向上(如圖11),求此時(shí)貨輪距燈塔A的距離AB(結(jié)果精確到0.1.參
考數(shù)據(jù):sin4(T=0.643,sin65"=0.906,sin701=0.904,sin75,,=0.966).
分析:本題取材于中學(xué)代數(shù)中的“正弦定理”內(nèi)容,關(guān)鍵要通過閱讀、
自學(xué),從中了解正弦定理的內(nèi)容和其證明并要會(huì)簡潔應(yīng)用。
解:(1)第一步:a、b、ZA;,_=上;其次步:NA、ZB;
sinAsinB
NA+NB+/C=180"
第三步:a、/A、NC或b、ZB.ZC,,_=,或,_=,
sinAsinCsinBsinC
(2)解:依題意,可求得NABC=i8(r—45“-70"=65",Z
A=180"—(30"+45"+65")=40"
BC=28.4X1=14.2
2
??AB14.2?AR=14.2xsin75014.2x0.966
sin75〃sin40"sin<)p0.643
答:貨輪距燈塔A的距離約為21.3海里.
[解題啟示]
近幾年來,中考題中出現(xiàn)了與中學(xué)或高校學(xué)問有關(guān)的“滲透型”試題,
這類試題較好地考查了學(xué)生的自學(xué)實(shí)力,也體現(xiàn)了新課程思想理念,故在
復(fù)習(xí)中要引起重視。
例3(07浙江衢州)請閱讀下列材料:
問題:如圖(2),一圓柱的底面半徑為5dm,BC是底面直徑,求一只
螞蟻從A點(diǎn)動(dòng)身沿圓柱表面爬行到點(diǎn)C的最短路途。小明設(shè)計(jì)了兩條路途:
路途1:側(cè)面綻開圖中的先端AC。如下圖(2)所示:
沿AB翦開
另平
設(shè)路途1的長度為4,則1=AC2=AB2+AC2=52+(5乃)2=25+25乃?
路途2:高線AB+底面直徑BC。如上圖(1)所示:乙人下物的十
/比較兩個(gè)正數(shù)的大
C小,有時(shí)用它們的
「平方來比較更便利
O
設(shè)路途2的長度為",則,22=(AA+AC)2=(5+10)2=225
22
v/,-/2=25+25^-225=25%?-200=25(乃?-8)>0
2
>/2/(>/2
所以要選擇路途2較短。
(1)小明對上述結(jié)論有些懷疑,于是他把條件改成:“圓柱的底面半徑
為1dm,高AB為5dm”接著按前面的路途進(jìn)行計(jì)算。請你幫小明完成
下面的計(jì)算:
路途1:小心=___________________;包
飛殿
22
路途2:/2=(AB+AC)=
2
1/2/,/2(填〉或v)
所以應(yīng)選擇路途____________(填1或2)較短.
⑵請你幫小明接著探討:在一般狀況下,當(dāng)圓柱的底面半徑為r,高為h時(shí),
應(yīng)如何選擇上面的兩條路途才能使螞蟻從點(diǎn)A動(dòng)身沿圓柱表面爬行到C點(diǎn)
的路途最短。
222222
解:(1)l}AC=AB'+AC=5+^-=25+^
l=(A8+AC)2=(5+2)2=49
22
/j</2(</,
所以要選擇路途1較短。
(2)/,2=AC2=AB2+AC2=A2+(^r)2
222
l2=(AB+AC)=(/i+2r)
一//=h2+(;rr)2—(h+2r)2=r(^2r-4r-4/?)=r[(^2-4)r-4/?]
當(dāng)r=-^7時(shí),/:=《;當(dāng)—>4^時(shí),記>《;當(dāng),時(shí),/「v^。
TC-47T--47T~~4
例4.(05南京)在平面內(nèi),假如一個(gè)圖形繞一個(gè)定點(diǎn)旋轉(zhuǎn)肯定的
角度后能與自身重合,那么就稱這個(gè)圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)動(dòng)的這個(gè)角
稱為這個(gè)圖形的一個(gè)旋轉(zhuǎn)角。例如:正方形圍著它的對角線的交點(diǎn)旋轉(zhuǎn)
90°后能與自身重合(如圖),所以正方形是旋轉(zhuǎn)對稱圖形,它有一個(gè)
(1)推斷下列命題的真假(在相應(yīng)的括號(hào)內(nèi)填上“真”或"假”)O
①等腰梯形是旋轉(zhuǎn)對稱圖形,它有一個(gè)旋轉(zhuǎn)角為180°。
②矩形是旋轉(zhuǎn)對稱圖形,它有一個(gè)旋轉(zhuǎn)角為180°()
(2)填空:下列圖形中,是旋轉(zhuǎn)對稱圖形,且有一個(gè)旋轉(zhuǎn)角為120°的
是(寫出全部正確結(jié)論的序號(hào)):①正三角形;②正方形;
③正六邊形;④正八邊形V
(3)寫出兩個(gè)多邊形,它們都是旋轉(zhuǎn)對圖形,都有一個(gè)旋轉(zhuǎn)角為72。,
并且分別滿意下列條件
①是軸對稱圖形,但不是中心對稱圖形:
②既是軸對稱圖形,又是中心對稱圖形:
分析:解答本題的關(guān)鍵是讀懂材料中的“旋轉(zhuǎn)對稱圖形”和“旋轉(zhuǎn)角”兩
個(gè)概念。
解:(1)①假②真;(2)①、③;(3)①如正五邊形,正十五邊形;
②如正十邊形,正二十邊形
例4(07山西臨汾)閱讀材料并解答問題:
與正三角形各邊都相切的圓叫做正三角形的內(nèi)切圓,與正四邊形各邊都相
切的圓叫做正四邊形的內(nèi)切圓,,與正〃邊形各邊都相切的圓叫做正〃邊
形的內(nèi)切圓,設(shè)正〃(〃,3)邊形的面積為5M形,其內(nèi)切圓的半徑為摸索
究正〃邊形的面積.
(1)如圖①,當(dāng)〃=3時(shí),
設(shè)45切P于點(diǎn)C,連結(jié)",OA,OB,
:.OCLAB,
:,OA=OBf
:.^AOC=-AOB,:.AB=2BC.
2
在RtAAOC中,
\'ZAOC=-^-=6G°,OC=r9
23,,
:.AC=r.tan60°,:.AB=2r.tan600,
<,
S.,W...=—2?r?2rtaii60=r2tan60c7,
,,S正三角形=3s^38=3r?tan60?
(2)如圖②,當(dāng)〃=4時(shí),仿照(1)中的方法和過程可求得:
S正四邊形=4S&OAB=;
(3)如圖③,當(dāng)〃=5時(shí),仿照(1)中的方法和過程求s正初形;
(4)如圖④,依據(jù)以上探究過程,請干脆寫出S正出形=
解:(1)4,tan450............................................................................................2分
(2)如圖③,當(dāng)〃=5時(shí),設(shè)鉆切。于點(diǎn)C,連結(jié)OGOAOB,
':OA=OBf
136()°
VZAOC=---=36°,OC=r,.............................3分
25
AC=/*tan36",AB=2r?Un36",........................4分
5分
圖③
,,S正砌形=5s△OAB=5廣tan36°?6分
(3)府tan幽.???
n
[課堂訓(xùn)練]
一.基礎(chǔ)訓(xùn)練:
1.閱讀:由于我們已經(jīng)學(xué)過三角形內(nèi)角和定理,因此,我們可以過多邊形
的一個(gè)頂點(diǎn)引對角線,將多邊形分成三角形,利用三角形的內(nèi)角和定理
來探討多邊形的內(nèi)角和。
讀了這段內(nèi)容,我們初步了解將多邊形的問題轉(zhuǎn)化為()
問題的思想方法,了解到()的辯證唯物
主義觀點(diǎn)。
2.(05安徽)下面是數(shù)學(xué)課堂的一個(gè)學(xué)習(xí)片段,閱讀后,請回答下面的
問題:
學(xué)習(xí)等腰二角形有關(guān)內(nèi)容后,張老師請同學(xué)們溝通探討這樣一個(gè)問題:
“已知等腰三角形ABC的角A等于30°,請你求出其余兩角
同學(xué)們經(jīng)片刻的思索與溝通后,李明同學(xué)舉手說:“其余兩角是30°和
120°”;王華同學(xué)說:“其余兩角是75°和75。還有一些同學(xué)也提
出了不同的看法……
⑴假如你也在課堂中,你的看法如何?為什么?
⑵通過上面數(shù)學(xué)問題的探討,你有什么感受?(用一句話表示)
3.(06北京課標(biāo)B卷)請閱讀下列材料:
問題:現(xiàn)有5個(gè)邊長為1的正方形,排列形式如圖1,請把它
們分割后拼接成一個(gè)新的正方形.要求:畫出分割線并在正方形網(wǎng)
格圖(圖中每個(gè)小正方形的邊長均為1)中用實(shí)線畫出拼接成的新
正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長為Mx>0).依題意,
割補(bǔ)前后圖形的面積相等,有V=5,解得工=石.由此可知新正
方形的邊長等于兩個(gè)正方形組
成的矩形對角線的長.于是,畫出如圖2所示的分割線,拼出如圖
3所示的新正方形.
圖3
請你參考小東同學(xué)的做法,解決如下問題:
現(xiàn)有10個(gè)邊長為1的正方形,排列形式如圖4,請把它們分
割后拼接成一個(gè)新的正方形.要求:在圖4中畫出分割線,并在圖
5的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長均為1)中用實(shí)線畫
出拼接成的新正方形.
說明:干脆畫出圖形,不要求寫分析過程.I
解:M
圖4
圖5
二.拓展訓(xùn)練:
1.(04青海省i皇中縣)閱讀材料:
如圖(6)在四邊形ABCD中,對角線AC1BD,
求證:S四邊形ABCD=5AC?BD.
SA/S1CCtDJ=—2AC-PZ),
證明:AC1BD-
圖(6)
SAn,RotC=-2AC>BP.
一?S四邊形ABCD=SAACD+SAACB=;AC?PD+;AC?BP
=-AC(PD+PB)=-AC-BD.
22
解答問題:
1)上述證明得到的性質(zhì)可敘述為
(2)已知:如圖(7),等腰梯形ABCD中,AD//BC,對角線
AC1BD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的
面積.
圖7
2.(04無錫)讀一讀,想一想,做一做
(1)國際象棋、中國象棋和圍棋號(hào)稱世界三大棋種.國際象棋中的“皇
后”的威力可比中國象棋中的“車”大得多:“皇后”不僅能限制她所在
的行與列中的每一個(gè)小方格,而且還能限制“斜”方向的兩條直線上的每
一個(gè)小方格.如圖甲是一個(gè)4X4的小方格棋盤,圖中的“皇后。'能限制
圖中虛線所經(jīng)過的每一個(gè)小方格.
①在如圖乙的小方格棋盤中有一“皇后。',她所在的位置可用“(2,
3)”來表示,請說明“皇后Q'所在的位置“(2,3)”的意義,并用
這種表示法分別寫出棋盤中不能被該“皇后所限制的四個(gè)位置.
②如圖丙也是一個(gè)4X4的小方格棋盤,請?jiān)谶@個(gè)棋盤中放入四個(gè)“皇
后。',使這四個(gè)“皇后Q'之間互不受對方限制(在圖丙中的某四個(gè)小
方格中標(biāo)出字母。即可).
23X3的正方■形和2X
丙
3的矩形圖片A、B、C(如
圖),現(xiàn)從中各選取若干個(gè)圖片拼成不同的圖形.請你在下面給出的方格紙
中,按下列要求分別畫出一種示意圖(說明:下面給出的方格紙中,每個(gè)
小正方形的邊長均為1.拼出的圖形,要求每兩個(gè)圖片之間既無縫隙,也
不重疊.畫圖必需保留拼圖的痕跡)
①選取A型、B型兩種圖片各1塊,C型圖片2塊,在下面的圖1
中拼成一個(gè)正方形;
②選取A型4塊,B型圖片1塊,C型圖片4塊,在下面的圖2中
拼成一個(gè)正方形;
③選取A型3塊,B型圖片1塊,再選取若干塊C型圖片,在下面
的圖3中拼成一個(gè)距形.
□□□
ABC
[課后訓(xùn)練]
一.基礎(chǔ)訓(xùn)練:
1.(2003?蘭州)通過閱讀所得的啟示來回答問題(閱讀中的結(jié)論可以干脆
用).
閱讀:在直線上有n個(gè)不同的點(diǎn),則此圖中共有多少條線段?
分析:通過畫圖嘗試,得表格
圖形直線上點(diǎn)的個(gè)共有線段條兩者關(guān)系
數(shù)數(shù)
21=0+1
AiA21
AIA?A3333=0+1+2
A】A2A3466=0+1+2+3
A4
A】A2A3A451010=0+1+2+3+4
A5
?????????
n{n-1)m〃一1)
A】n
A-jA3A422
A5…An=0+1+2+3…
+ln-l)
問題:某學(xué)校初三年級共有8個(gè)班進(jìn)行辯論賽,規(guī)定進(jìn)行單循環(huán)賽(每兩
班之間賽一場),問該初三年級的辯論賽共進(jìn)行多少場次?
2.(05臺(tái)州)我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求
積術(shù)”,即已知三角形的三邊長,求它的面積.用現(xiàn)代式子表示即為:
忸I(lǐng)2〃①(其中〃、以c為三角形的三邊長,6為
面積).
而另一個(gè)文明古國古希臘也有求三角形面積的海倫公式:
_______________a+b+c
s=^p(p-a)(p-b)(p-c)...②(其中I"2.
⑴若已知三角形的三邊長分別為5、7、8,試分別運(yùn)用公式①和公
式②,計(jì)算該三角形的面積*;
⑵你能否由公式①推導(dǎo)出公式②?請?jiān)囋?
3.(04紹興)課本第五冊第65頁有一題:
已知一元二次方程ad-"u+c=0的兩個(gè)根滿意k-司=應(yīng),且a,
b,c分
是△ABC的/A,ZB,/C的對邊.若a=c,求/B的度數(shù).小敏解得此題
的正確答案“NB=120°”后,思索以下問題,請你幫助解答.
<1)若在原題中,將方程改為口5-Q/"+c=0,要得到NB=120°,
而條件“a=c”不變,那么應(yīng)對條件中的歸-目的值作怎樣的變
更?并說明理由.
<2)若在原題中,將方程改為辦2-赤/>+。=。(n為正整數(shù),n》2),
要得到NB=120°,而條件“a=c”不變,那么條件中的歸一百
的值應(yīng)改為多少(不必說明理由)?
二.拓展訓(xùn)練:
1.(05佛山)“三等分角”是數(shù)學(xué)史上一個(gè)聞名的問題,但僅用尺規(guī)不
行能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳
角”的方法(如圖):將給定的銳角NAOB置于直角坐標(biāo)系中,邊OB
在X軸上、邊OA與函數(shù)),='的圖象交于點(diǎn)P,以P為圓心、以20P為
x
半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作1軸和),軸的平行線,兩直線
相交于點(diǎn)M,連接OM得到NMOB,則NMOB=;/AOB.要明白帕
普斯的方法,請?zhí)接懸韵聠栴}:
(1)設(shè)P(?!?、犬仇:),求直線OM對應(yīng)的函數(shù)表達(dá)式(用含“泊的代數(shù)
ab
式表示).
(2)分別過點(diǎn)P和R作),軸和工軸的平行線,兩直線相交于點(diǎn)Q.請說
明Q點(diǎn)在直線OM上,并據(jù)此證明NMOB=;/AOB.
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡要說
明).
2.(05資陽)閱讀以下短文,然后解決下列問題:
假如一個(gè)三角形和一個(gè)矩形滿意條件:三角形的一邊與矩形的一邊重
合,且三角形的這邊所對的頂點(diǎn)在矩形這邊的對邊上,則稱這樣的矩形為
三角形的“友好矩形”.如圖8①所示,矩形歹即為△力右。的“友好
矩形”.明顯,當(dāng)是鈍角三角形時(shí),其“友好矩形”只有一個(gè).
(1)仿照以上敘述,說明什么是一個(gè)三角形的“友好平行四邊形”;
(2)如圖8②,若為直角三角形,且2090°,在圖8②中
畫出的全部“友好矩形”,并比較這些矩形面積的大?。?/p>
(3)若△力3。是銳角三角形,且3。46月3,在圖8③中畫出△S3。
的全部“友好矩形”,指出其中周長最小的矩形并加以證明.
綜合訓(xùn)練
(時(shí)間90分鐘,總分100分)
一.填空(每題3分洪24分):
1.先閱讀下列⑴題然后解答(2)、(3)題:
(1)用分組分解法分解多項(xiàng)式:nx+ny=(mx+nxj+(my
+加,組內(nèi)公因式分別為x、y,組間公因式為功+口最終分解結(jié)果為:
(m+八)(才+必
(2)也可以這樣分解:277X4-my-\-ny=()4-(),組內(nèi)
公因式分別為,組間公因式為,最終分解結(jié)果為:
(3)上述兩種分組的目的都是_____,分組分解的另一個(gè)目的是分組后
能運(yùn)用公式法分解.請你設(shè)計(jì)一個(gè)關(guān)于字母X、y的二次四項(xiàng)式因式分解,
要求要用到分組分解法和完全平方公式:.
2.閱讀下面一題的解題過程,請推斷是否正確,若不正確,請寫出正確的
解答.
已知a為實(shí)數(shù),化簡匚舊.
3.閱讀下列證明過程:
已知,如圖1四邊形538中,AB=DC,AC=BD,AD豐BC,
求證:四邊形力是等腰梯形.
圖1
證明:過D作D*〃力B,交BC于E,則2郎=/1①
?「AB=DC,AC=DB,BC=CBy
^ABC^^DCB)②
/.^ABC=Z.DCB③
N1=NDCB@
/.AB=DC=DE⑤
四邊形RBED是平行四邊形⑥
/.AD//BC?
BE=AD⑧
又「ADWBC,:.BE^BC工⑨
點(diǎn)$。是不同的點(diǎn),DC^AB
又「AB=CD
四邊形相⑵是等腰梯形⑩
讀后完成下列各小題.
(1)證明過程是否有錯(cuò)誤?如有,錯(cuò)在第幾步上,答:.
(2)作。E///1B的目的是:.
(3)有人認(rèn)為第9步是多余的,你的看法呢?為什么?答:
(4)推斷四邊形力B即為平行四邊形的依據(jù)是:.
(5)推斷四邊形ABCD是等腰梯形的依據(jù)是
(6)若題設(shè)中沒有AD手BC,那么四邊形肯定是等腰梯形嗎?
為什么?答==.
4.閱讀下面材料并完成填空.
你能比較兩個(gè)數(shù)20062。。7和20072。。6的大小嗎?為了解決這個(gè)問題,
先把問題一般化,即比較爐+】和(八+1/的大?、?gt;1的整數(shù)).然后,從
分析A=1,n=2,n=3,……,這些簡潔情形入手,從中發(fā)覺規(guī)律,經(jīng)
過歸納,猜想出結(jié)論.
(1)通過計(jì)算,比較下列①?③各組兩個(gè)數(shù)的大小(在橫線上填
“V”或“=”)
①y21;②2332;③3’43;
@45>54;⑤56>65;⑥67>76;⑦78>87;…
(2)從第⑴小題的結(jié)果經(jīng)過歸納,可以猜想出和S+1『的大小關(guān)
系是:_________
⑶依據(jù)上面歸納猜想得到的一般結(jié)論,可以得到
2OO6200720072006(填“>,,,,<,,或
5.如圖△4BC中,BC=a,
若外片分別是力A4。的中點(diǎn),則
若。2、毛分別是。出、的中點(diǎn),則。2石2=泉+/="
,I4/4
若。3、4分別是&C的中點(diǎn),則。右=3序"+"卜1;
若)、用,分別是2/、的中點(diǎn),則
D?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022冬奧知識(shí)課件
- 2023年銷售部工作總結(jié)與明年計(jì)劃匯報(bào)
- 創(chuàng)意設(shè)計(jì)概述
- 中班冬季班本課程
- 兒童拇指骨折護(hù)理常規(guī)
- 誠信教育主題
- 人教版數(shù)學(xué)六年級下冊一課一練-3.1圓柱人教新版含答案
- 人教版數(shù)學(xué)六年級下冊4.3比例的應(yīng)用練習(xí)卷含答案
- 茂名市信宜市2025年數(shù)學(xué)三下期末達(dá)標(biāo)檢測試題含解析
- 四川鄰水實(shí)驗(yàn)學(xué)校2025屆高三下學(xué)期四月調(diào)研測試英語試題含解析
- 2025-2030中國便利店行業(yè)發(fā)展前景及發(fā)展策略與投資風(fēng)險(xiǎn)研究報(bào)告
- 2025上海勞動(dòng)合同樣本專業(yè)版(合同版本)
- 2025年山東省棗莊市臺(tái)兒莊區(qū)中考一調(diào)語文試題(原卷版+解析版)
- 2025年江蘇省蘇錫常鎮(zhèn)高考數(shù)學(xué)調(diào)研試卷(一)(含答案)
- (二模)烏魯木齊地區(qū)2025年高三年級第二次質(zhì)量檢測語文試卷(含官方答案)
- 2018工程定額單價(jià)表
- 城區(qū)建筑垃圾處理資源再利用設(shè)備采購 投標(biāo)方案(技術(shù)方案)
- 第11課《山地回憶》教學(xué)課件2024-2025學(xué)年統(tǒng)編版語文七年級下冊
- 建筑工程材料采購管理職責(zé)
- 【道法】歷久彌新的思想理念課件 2024-2025學(xué)年統(tǒng)編版道德與法治七年級下冊
- 【培訓(xùn)課件】DOE培訓(xùn)
評論
0/150
提交評論