湖北省百所重點(diǎn)中學(xué)2025屆高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第1頁(yè)
湖北省百所重點(diǎn)中學(xué)2025屆高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第2頁(yè)
湖北省百所重點(diǎn)中學(xué)2025屆高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第3頁(yè)
湖北省百所重點(diǎn)中學(xué)2025屆高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第4頁(yè)
湖北省百所重點(diǎn)中學(xué)2025屆高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省百所重點(diǎn)中學(xué)2025屆高三學(xué)業(yè)水平考試試題數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在棱長(zhǎng)為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點(diǎn),M為棱AD的中點(diǎn),設(shè)P,Q為底面ABCD內(nèi)的兩個(gè)動(dòng)點(diǎn),滿足平面EFG,,則的最小值為()A. B. C. D.2.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.3.等比數(shù)列若則()A.±6 B.6 C.-6 D.4.已知拋物線,過拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.5.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.6.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.7.一個(gè)盒子里有4個(gè)分別標(biāo)有號(hào)碼為1,2,3,4的小球,每次取出一個(gè),記下它的標(biāo)號(hào)后再放回盒子中,共取3次,則取得小球標(biāo)號(hào)最大值是4的取法有()A.17種 B.27種 C.37種 D.47種8.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.9.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.10.已知,且,則在方向上的投影為()A. B. C. D.11.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.12.斜率為1的直線l與橢圓相交于A、B兩點(diǎn),則的最大值為A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.14.已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為2的正三角形,,則球的體積為__________.15.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對(duì)稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.18.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說明理由.19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.20.(12分)在邊長(zhǎng)為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.21.(12分)如圖,直三棱柱中,分別是的中點(diǎn),.(1)證明:平面;(2)求二面角的余弦值.22.(10分)已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列中,,,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對(duì)稱性可得的最小值.【詳解】如圖,分別取的中點(diǎn),連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對(duì)稱點(diǎn)為,,當(dāng)且僅當(dāng)共線時(shí)取等號(hào),∴所求最小值為.故選:C.【點(diǎn)睛】本題考查空間距離的最小值問題,解題時(shí)作出正方體的完整截面求出點(diǎn)軌跡是第一個(gè)難點(diǎn),第二個(gè)難點(diǎn)是求出點(diǎn)軌跡,第三個(gè)難點(diǎn)是利用對(duì)稱性及圓的性質(zhì)求得最小值.2、B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.3、B【解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.4、A【解析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.5、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.6、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.7、C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號(hào)均不為4的球的情況,進(jìn)而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號(hào)最大值是4的取法有種,故選:C【點(diǎn)睛】本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.9、D【解析】

討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.10、C【解析】

由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.11、B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡(jiǎn)單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.12、C【解析】

設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長(zhǎng)公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長(zhǎng)|AB|=4.故選:C.【點(diǎn)睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)圓柱的軸截面的邊長(zhǎng)為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長(zhǎng)為x,則由,得,∴.故答案為:【點(diǎn)睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.14、【解析】

由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長(zhǎng)為的正方體的外接球,求出正方體的對(duì)角線的長(zhǎng),就是球的直徑,然后求出球的體積.【詳解】解:因?yàn)?,為正三角形,所以,因?yàn)?,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長(zhǎng)為的正方體的外接球,因?yàn)檎襟w的對(duì)角線長(zhǎng)為,所以其外接球的半徑為,所以球的體積為故答案為:【點(diǎn)睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計(jì)算能力,屬于中檔題.15、(1,)【解析】

在定義域[m,n]上的值域是[m2,n2],等價(jià)轉(zhuǎn)化為與的圖像在(1,)上恰有兩個(gè)交點(diǎn),考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個(gè)交點(diǎn)考查臨界情形:與切于,.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進(jìn)行等價(jià)轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).16、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點(diǎn)睛】利用排列組合計(jì)數(shù)時(shí),關(guān)鍵是正確進(jìn)行分類和分步,分類時(shí)要注意不重不漏.在本題中,甲與乙是兩個(gè)特殊元素,對(duì)于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析②證明見解析【解析】

(1)首先根據(jù)直線關(guān)于直線對(duì)稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡(jiǎn)后得到.【詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對(duì)稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)椋?,,由題意,解得.(2)因?yàn)?,所?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)椋?,因?yàn)椋源嬖?,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)椋?,所以時(shí),,即時(shí),.【點(diǎn)睛】本小題考查函數(shù)圖象的對(duì)稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識(shí);考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識(shí).18、(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè)【解析】

(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項(xiàng)公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項(xiàng)和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因?yàn)?,,所以,解?所以數(shù)列的通項(xiàng)公式為:.(2)由(1)得,當(dāng),時(shí),可得①,②②①得,,則有,即,,.因?yàn)?,由①得,,所以,所以?所以數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項(xiàng),使得對(duì)任意,都有,即對(duì)任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當(dāng),時(shí),,這與矛盾.(ii)若,則當(dāng),時(shí),.而,,所以.故,這與矛盾.所以.其次證明:當(dāng)時(shí),.因?yàn)?,所以在上單調(diào)遞增,所以,當(dāng)時(shí),.所以當(dāng),時(shí),.再次證明.(iii)若時(shí),則當(dāng),,,,這與③矛盾.(iv)若時(shí),同(i)可得矛盾.所以.當(dāng)時(shí),因?yàn)?,,所以?duì)任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè).【點(diǎn)睛】本題考查求等比數(shù)列通項(xiàng)公式,證明等差數(shù)列,以及數(shù)列中的探索性問題,是一道數(shù)列綜合題,考查學(xué)生的分析,推理能力.19、(1)(2)【解析】

(1)用分類討論思想去掉絕對(duì)值符號(hào)后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當(dāng)時(shí),,即,此時(shí)無解;當(dāng)時(shí),;當(dāng)時(shí),.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.的最小值為4.【點(diǎn)睛】本題考查解絕對(duì)值不等式,考查用基本不等式求最小值.解絕對(duì)值不等式的方法是分類討論思想.20、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論