遼寧省遼河油田二中2025屆高三數學試題全國三卷模擬卷1含解析_第1頁
遼寧省遼河油田二中2025屆高三數學試題全國三卷模擬卷1含解析_第2頁
遼寧省遼河油田二中2025屆高三數學試題全國三卷模擬卷1含解析_第3頁
遼寧省遼河油田二中2025屆高三數學試題全國三卷模擬卷1含解析_第4頁
遼寧省遼河油田二中2025屆高三數學試題全國三卷模擬卷1含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省遼河油田二中2025屆高三數學試題全國三卷模擬卷1請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列中,,若對于任意的,不等式恒成立,則實數的取值范圍為()A. B.C. D.2.已知,則的大小關系為A. B. C. D.3.已知α,β表示兩個不同的平面,l為α內的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件4.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,5.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.6.若集合,,則()A. B. C. D.7.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln28.設,則(

)A.10 B.11 C.12 D.139.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.10.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.311.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元12.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.40二、填空題:本題共4小題,每小題5分,共20分。13.一次考試后,某班全班50個人數學成績的平均分為正數,若把當成一個同學的分數,與原來的50個分數一起,算出這51個分數的平均值為,則_________.14.已知函數的定義域為R,導函數為,若,且,則滿足的x的取值范圍為______.15.已知隨機變量服從正態(tài)分布,,則__________.16.已知是拋物線上一點,是圓關于直線對稱的曲線上任意一點,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,已知圓,以原點為極點,x軸正半軸為極軸建立極坐標系,已知直線平分圓M的周長.(1)求圓M的半徑和圓M的極坐標方程;(2)過原點作兩條互相垂直的直線,其中與圓M交于O,A兩點,與圓M交于O,B兩點,求面積的最大值.18.(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是-1;(2)若,,成等比數列,求直線的方程.19.(12分)已知函數,其中為自然對數的底數,.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數有無極值點?若有,請求出極值點的個數;若沒有,請說明理由.20.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數圖象的一條對稱軸方程為且,求的值.21.(12分)已知函數(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.22.(10分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數a,k的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

先根據題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B本題主要考查了數列的通項的求法以及函數的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數列求出通項公式和后面的轉化函數,屬于難題.2.D【解析】

分析:由題意結合對數的性質,對數函數的單調性和指數的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數冪的大小的比較,我們通常都是運用指數函數的單調性,但很多時候,因冪的底數或指數不相同,不能直接利用函數的單調性進行比較.這就必須掌握一些特殊方法.在進行指數冪的大小比較時,若底數不同,則首先考慮將其轉化成同底數,然后再根據指數函數的單調性進行判斷.對于不同底而同指數的指數冪的大小的比較,利用圖象法求解,既快捷,又準確.3.A【解析】試題分析:利用面面平行和線面平行的定義和性質,結合充分條件和必要條件的定義進行判斷.解:根據題意,由于α,β表示兩個不同的平面,l為α內的一條直線,由于“α∥β,則根據面面平行的性質定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.4.D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.5.A【解析】

設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.6.B【解析】

根據正弦函數的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.7.B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.8.B【解析】

根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.本題主要考查了分段函數中求函數的值,屬于基礎題.9.C【解析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.10.A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.11.D【解析】

設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.12.C【解析】

設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

根據均值的定義計算.【詳解】由題意,∴.故答案為:1.本題考查均值的概念,屬于基礎題.14.【解析】

構造函數,再根據條件確定為奇函數且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,,令,則,故函數為奇函數,故函數在上單調遞減,則,即,故,則x的取值范圍為.故答案為:本題考查函數奇偶性、單調性以及利用函數性質解不等式,考查綜合分析求解能力,屬中檔題.15.0.22.【解析】

正態(tài)曲線關于x=μ對稱,根據對稱性以及概率和為1求解即可?!驹斀狻勘绢}考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎題.16.【解析】

由題意求出圓的對稱圓的圓心坐標,求出對稱圓的圓坐標到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設圓心關于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設,則,又,所以,,即,所以,故答案為:.該題考查的是有關動點距離的最小值問題,涉及到的知識點有點關于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),(2)【解析】

先求出,再求圓的半徑和極坐標方程;(2)設求出,,再求出得解.【詳解】(1)將化成直角坐標方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標方程,得.即圓M的極坐標方程為.(2)設,則,用代替.可得,本題主要考查直角坐標和極坐標的互化,考查極徑的計算,意在考查學生對這些知識的理解掌握水平.18.(1)見解析;(2)【解析】

(1)設,,由已知,得,代入中即可;(2)利用拋物線的定義將轉化為,再利用韋達定理計算.【詳解】(1)在拋物線上,∴,設,,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設::,則,,,∴,∴,即(*),將直線與拋物線聯立,可得:,所以,代入(*)式,可得滿足,∴:.本題考查直線與拋物線的位置關系的應用,在處理直線與拋物線位置關系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.19.(1)(2)沒有,理由見解析【解析】

(1)求導,研究函數在x=0處的導數,等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函數在區(qū)間上單調遞減,在區(qū)間上單調遞增,又函數,故恒成立,∴函數在定義域內單調遞增,函數不存在極值點.本題考查了導數在切線問題和函數極值問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.20.(1)(2)【解析】

(1)由已知利用三角函數恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數恒等變換的應用,可得,根據題意,得到,解得,得到函數的解析式,進而求得的值,利用三角函數恒等變換的應用可求的值.【詳解】(1)由題意,根據正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.本題主要考查了三角函數恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.21.(1)(2)32【解析】

利用絕對值不等式的解法求出不等式的解集,得到關于的方程,求出的值即可;由知可得,,利用三個正數的基本不等式,構造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號成立,∴的最大值為32.本題主要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論