【世界銀行】使用清潔氫氣對氨和氮肥進行脫碳處理-2025.2_第1頁
【世界銀行】使用清潔氫氣對氨和氮肥進行脫碳處理-2025.2_第2頁
【世界銀行】使用清潔氫氣對氨和氮肥進行脫碳處理-2025.2_第3頁
【世界銀行】使用清潔氫氣對氨和氮肥進行脫碳處理-2025.2_第4頁
【世界銀行】使用清潔氫氣對氨和氮肥進行脫碳處理-2025.2_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

DisclosureAuthorized

FEBRUARY20252025/140

ENERGY&EXTRACTIVESGLOBALPRACTICE

AKNOWLEDGENOTESERIESFORTHE

Public

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

Thebottomline.Syntheticfertilizersareessentialtosustainingtheworld’spopulation,buttheirproductionisresponsiblefor1.8–2.4percentofglobalgreenhousegasemissions.Cleanhydrogenholdsgrowingpotential(amidfallingcosts)todecarbonizefertilizerproduction.Hydrogenisusedtoproducesyntheticammonia,abuildingblockofmostfertilizers.Withthefertilizermarketas

areliableofftaker,thisshiftcouldsupporttheexpansionofcleanhydrogenoverallevenasitboostsglobalfoodsecurity.Butthistransitionmayrequireadjustments,includingchangesin

AuthorshipPublicDisclosurePublicDisclosureAuthorized

fertilizertypes,andmodificationstoexistingsubsidyschemes.

Theproductionoffertilizeringredientssuchasurea,ammo-niumnitrates,andammoniumphosphatesrequiresammo-nia,over85percentofwhoseproductionisspecificallyforfertilizers.Fertilizerproductioncanthusbemadegreenerbydecarbonizingammoniasynthesisusingcleanhydrogen.

Cleanhydrogencanbegeneratedusingrenewablepowerorproducedfromso-calledlow-carbonhydrogen,whichitselfisproducedfromfossilfuelscombinedwithcarboncaptureandstorage(CCS).Beyondshrinkingthecarbonfootprintoffertilizerproduction,cleanhydrogencandriveinnovationandeconomicgrowth,createmarketopportunities,andmaketheagriculturalsupplychainmoreresilient.

Renewablehydrogenisproducedusingrenewableelec-tricitysourceslikesolarandwind(seeexamplesinfigure1).Thishydrogenisthencombinedwithnitrogen,obtainedfromanelectricallypoweredairseparationprocess,tosyn-thesizeammoniausingtheHaber-Boschprocess.AmmoniaproductioninmostHaber-BoschplantsreleasessignificantGHGemissionssincenaturalgasisusedasafeedstockto

Whatisthebestwaytodecarbonizefertilizerproduction?

Byreplacingfossilfuelswithcleansourcesofhydrogeninthesynthesisofammonia

Thefertilizerindustryplaysacrucialroleinglobalagriculture,ensuringfoodsecurityforbillionsbyenhancingcropyieldsandsoilfertility.However,traditionalfertilizerproductionisenergy-intensiveandreliesonfossilfuels,particularlynaturalgas,leadingtosubstantialgreenhousegasemissions.Byreplacingfossilfuelswithcleanhydrogensources,thecar-bonintensityoffertilizerproductioncanbereduced,therebyadvancingglobalclimatechangegoals,suchasthosesetbytheParisAgreement,aimingtolimitglobalwarmingtowellbelow2°C.

ThisLiveWirewaspreparedbytheEnergySector

ManagementAssistanceProgramattheWorldBankin

supportoftheHydrogenforDevelopmentPartnership.H4Dconsistsofnearly50partnerorganizationsaroundthe

world.Itassistscountriesthathaveincludedlow-emissionshydrogenintheirlong-termdecarbonizationstrategies.

PreparationoftheLiveWirewascoordinatedbyRafaelBen,anenergyspecialistatESMAP,andDolfGielen,ESMAP’s

hydrogenlead.

2DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

Figure1.Basicconceptsunderlyingrenewableammoniaproduction

Batteries

Hydrogenstorage

Material?owPower?ow

WaterOxygen

SolarPV

Ammonia

Hydrogen

HaberBosch

synthesis

Electrolyzer

Wind

Airseparationunit

AirOxygen

Note:Energystorageandbackuppowerareshowninred.Thesearerequiredintheabsenceofagridconnectionoraccesstoso-calledbaseloadrenewables—consistent,reliableenergysourceslikegeothermalorhydropowerthatprovideacontinuoussupplyofelectricity.PV=photovoltaic.

kindisapromisingsteptowardintegratingammoniasyn-thesiswithvariablerenewableenergysources(Boyles2023;Rouwenhorst2023a).

Renewableammoniaproductionthereforerequires:

√Astablerenewablepowersourcesuchashydro,oracombinationofvariablerenewablesources,suchassolarandwind;

√Aconnectiontoalow-carbonelectricitygrid,althoughthismaynotbepracticalduringperiodsofpeakdemand;

or

producehydrogen.Partsoftheproductionprocessaredrivenwithsteamproducedasaby-productoftheexothermic(heat-releasing)ammoniasynthesisreaction.Butrenewableammoniaplantswillrelyminimallyonfossilfuelsandemitsignificantlylessbecauserenewablehydrogenwillreplacehydrogenderivedfromnaturalgasreforming.Also,renew-ables-basedelectricitywillreplacesteam,eventhoughitwillstillbeproducedintheammoniasynthesisreaction(MacFarlaneetal.2020).

√On-siteenergystorage,fromhydrogenstorageorpipe-

linedeliveryofhydrogen,oracombinationofthetwo.

Theserequirementscoulddriveupcosts,giventhehighcostsofstablerenewablesandhydrogenstorage.Butpartialflex-ibilityisasignificanttechnologicaladvance,thealternativebeingtoprovideafixed,constantflowofhydrogenatveryhighcosts,asinthesteelindustry(Aagaardetal.2023).

AmajorchallengeinrenewableammoniaproductionistheflexibilityoftheHaber-Boschprocesstomatchthevariabil-ityofrenewableenergysources.Ideally,plants’operationwouldbefullydynamic,matchingfluctuationsinresourcevariabilitythroughreal-timeadjustments.Butsuchfullflex-ibilityisgenerallynotfeasibleduetothehightemperaturesandpressuresinvolved.Nevertheless,recentefforts,particu-larlybyDanishresearchersandcompanies,areshowcasingadvancementsinthisarea.Forexample,partialflexibilityallowsplantstooperateatafractionoftheirdesignrate.Thedegreeofflexibilitypossiblevariesdependingontheequipmentdesignandmanufacturer.Aninnovationofthis

3

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

carboncaptureefficiency.Approximatelytwo-thirdsofcarbonemissionscanbecapturedrelativelyeasilyinSMR,buttheremainingthirdismorechallengingandcostlytocapture.Bycontrast,upto99percentofemissionscanbecapturedinATR,whichispotentiallymoreeconomicalandenvironmentallyfriendlyforlow-carbonhydrogenproduc-tion(SalmonandBa?ares-Alcántara2021aand2021b).

ThehighercapturerateinATRisachievablebecausepartialoxidationandsteamreformingareintegrated,and,thus,externalheating,whichproduceslow-concentrationfluegases,asinSMR,isnotneeded.ButATRusesmoreenergythanSMR,eventhoughitofferseaseofcaptureandhasaddedoperationalflexibilitysinceawiderrangeofhydrocar-bonfeedstockscanbeused.TheseadvantagesmakeATRapromisingalternativetoSMRforlow-carbonhydrogenandammoniaproduction.Theprocessoflow-carbonammoniaproductionissummarizedinfigure2.

Uncertaintyaroundequipmentcosts,especiallyfornewtech-nologieslikeelectrolyzers,makesithardtopredictthecostsofrenewableammonia.Currentestimatesare$794–$1,543perton—significantlyhigherthanthecostofgreyammonia,$121–$518perton,dependingonnaturalgasprices(Boyles2023;Aagaardandothers2023).Effortsarebeingmadetoreducecoststhroughgovernmentsubsidiesandimprovedproductiontechnologies,withexpectationsofasignificantcostdeclineby2050(Fasihiandothers2020),supportedbythefallingcostsofrenewablehydrogen.Movingtowardrenewableammoniacanpreventassetsfrombecomingstranded;itisalsoausefuloptionforshort-termemissionreductionsandfordevelopingoperatorskillsandpractices.

Forlow-carbonammonia,hydrogenisstillproducedmostcommonlyfromnaturalgasviasteammethanereforming(SMR)withCCS.However,aneweralternativeprocess,auto-thermalreforming(ATR),couldmakelow-carbonhydrogen,andthuslow-carbonammonia,lesscostlybyimproving

Figure2.Low-carbonammoniaproductionusingautothermalreforming

Air

separation

unit

Note:Dependingonthelevelofheatintegration,thepreheatermaynotberequired.CO2=carbondioxide.

CO2

transport

compression

andstorage

Autothermal reformerandwater gasshift

Ammonia

HaberBosch

Hydrogenseparation

Preheater

Hydrogen

Material?ow

Power?owHeat?ow

CO2airmixture

CO2

Naturalgas

synthesis

Nitrogen

Oxygen

AirPower

4

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

ATRpartiallyoxidizesthenaturalgasfeed.Thispartialoxi-dationmeansthattheheatrequirementfornaturalgascrackingismostlydeliveredinsidethereactor,andonlyasmallamountofnaturalgascombustionisrequiredoutsideittoproducelow-carbonhydrogen.Deliveringheatinsidethereactorinacontrolledenvironmentensuresthatthewastestreamisnearlypurecarbondioxide(CO2),whichthenbecomeseasier(andcheaper)tosequesterbecausenoseparationisneeded.Forammoniaproduction,integratingheatwiththeenergyproducedbytheHaber-Boschsynthe-sisreactorcouldfurtherreduceoreveneliminatethenaturalgascombustionrequiredbythepreheater(whichproducesCO2thatisconsiderablymoredifficulttosequester).

ThecaptureofconcentratedCO2streamsisalreadyquitecommonintheammoniaindustry,regardlessofthehydro-genproductionprocess,SMRorATR.Butthiscannotbeconsideredacarbonabatementapproach,sincethecarbonreactswithammoniatoproduceureaforagriculturaluse,andthecarbonintheureawillbequicklyreleasedintotheatmosphere.1

“High-qualityrenewableenergyenables

lower-costammoniaproductionbyloweringelectricitycosts.”

Becauseusingureaemitscarbon,agriculturewillneedhelpswitchingfromurea,whichissimpletoapply,becauseitissolid,tootherlow-orno-carbonfertilizersthatcanbepro-ducedfromammoniaalone,oftenintheformofammoniumnitrate,orwithotherinputs,suchasammoniumphosphatesorcalciumammoniumnitrates.Someofthesefertilizers

1Trueabatementwouldrequirethecapturedcarbontobestoredeither

geologicallyorinamineraldepositwhereitcannotentertheatmosphericcarboncycleintheshortterm.Alternatively,thecarbonforureacouldbe

extractedfromtheatmosphereorfrombiomass(agriculturalresidues,for-estryby-products,dedicatedenergy,organicwastematerials),butthecostsofextractingitfromtheatmospherearemuchtoohigh.Directaircaptureandbiomasswithcarboncaptureandstorage,respectively,cost$125–$335and$40–$120pertonofCO2(IEA2020).Moreover,theavailabilityofbio-massismuchtoolowgiventheglobalscaleoffertilizerproduction.

mustbeappliedasaliquid,whichcanbemorecostlyandtime-consumingtouse(Vogl,?hman,andNilsson2018).Thetransitionwillrequireadjustingsubsidyregimestosupportotherformsoffertilizers(Oniandothers2022).

Whatroledosubsidiesplayinfertilizer

markets—andhowisthatlikelytochange?

Subsidiesinteractwithnaturalgaspricesandotherfactorstoshapeprices,supplychains,andchoicesoffertilizers

About200millionmetrictons(MMT)ofammoniaarepro-ducedgloballyperyear,ofwhich170–180MMTgointoagriculturalfertilizers.Theremaining20MMPareusedinvariousindustrialapplications,includingtheproductionofexplosives,plastics,andotherchemicals.Everyyear,about20MMTofammoniaareshippedglobally.Transportingammoniaisfeasibleaswellascost-effective—andimportanttosustainitsglobalsupplychain—giventhesimilarityofitspropertieswithliquifiedpetroleumgas.

Fertilizertypesvarybyregion.DirectapplicationofammoniaiscommonintheUnitedStates,ureaiscommoninIndia,andnitrateispredominantinEurope.Whilerenewablehydrogenwillmaketheproductionofrenewableammoniaaffordableinthemediumtolongterm,producingderivativeslikeurearemainsachallenge.

Asnotedearlier,thepricesofnaturalgas—afeedstockandenergysourceintheHaber-Boschprocess—primarilydrivethecostofammoniaproduction.Thehighnaturalgaspricesduringthewinterof2022/23ledtothetemporaryclosureofseveralEuropeanammoniaproductionfacilities(Unkovichandothers2020)(figure3).Pricevolatilitystronglyinfluencestheeconomicsofammoniaproduction,particularlyforlow-carbonammoniaprojects.Giventhesecostdynamics,themostadvancedlow-carbonammoniaprojectsarecon-centratedinregionswherenaturalgasisaffordable,suchastheGulfCoastoftheUnitedStates.

Thequalityofrenewableenergysourcesheavilyinfluencesthecostofrenewableammonia.High-qualityrenewableenergyenableslower-costammoniaproductionbylow-eringelectricitycosts.Consistentpowerproduction,oftenachievedbycombiningwindandsolarresources,minimizes

5

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

Figure3.Fertilizerpricesovertime,showingaspikecoincidentwithhighnaturalgasprices

$permetricton

800

DAP

Urea

MOP

600

400

200

20162017201820192020202120222023

0

Source:Bloomberg;WorldBank.

Note:LastobservationisDecember2022.

DAP=diammoniumphosphate;MOP=muriateofpotash.

Figure4showsthecoststructurefordifferenttypesoffertiliz-ers,usingIndiaasanexample.Thegreenbarsrepresenttheproductioncostoffertilizers;theyellowbarsrepresenttheestimatedsubsidytomakefertilizersaffordableforfarmers.Conventionalureabenefitsfromheavygovernmentsubsi-dies,whichsignificantlyreduceitscostsforfarmers.Incon-trast,thepredictedcostsforrenewableammoniain2030arehigherthanthelowest-costconventionalurea(butlowerthanthehighmarketpricesobservedduringpricespikesin2022).Thishighlightsthepotentialforrenewableammoniatoprovidepricestabilityandprotectionagainstmarketvol-atility,thoughitwillstillrequiresubsidiestocompetewithconventionalurea.

ThefigurehighlightsthesignificantroleofsubsidiesindeterminingfertilizeraffordabilityinIndia.Whilerenewableammoniawilllikelyrequire$500$1,200insubsidiespermetrictontocompetewithconventionalureain2030,itisprojectedtoofferpricestability.However,widespreadadop-tionofrenewablefertilizersmayneedadditionalincentivesandpolicymeasuressuchassupportforswitchingfromureatoalternativefertilizers.Thesemeasuresarenotconsideredinthecurrentanalysis.

theneedforseasonalenergystorage.Fertilizerproductioncostsarethereforelowestincountrieswithfavorablerenew-ableenergyprofiles,makingthemidealasfertilizerexport-ers.Developingcountrieswithlimitedaccesstofertilizersthushaveasignificantopportunitytonotonlyproduceandconsumefertilizerslocallybutalsoexporttheexcess.Forinstance,fertilizerconsumptioninKenyaisonlyathirdoftheglobalaverageperhectare,butthecountryhasapromisingprofilefortherenewableproductionoffertilizer.RenewableammoniaproductioninKenyaandothersimilareconomiesthereforeoffersopportunitiesforboththedomesticandexportmarkets(Nayak-Lukeandothers2022).

Althoughammoniasprimaryusehashistoricallybeenasfer-tilizer,itsroleislikelytochangeinadecarbonizedeconomy,forexample,asamarinefuel,along-termenergystoragemedium,orahydrogencarrier.Thispotentialforsectorcouplingmaycreatecost-savingefficienciesbutmayalsointroducecompetitionthatcoulddriveuppricesinsomeindustries(Terazono,Pickard,andEvans2022).

Whileswitchingtozero-carbonfertilizerproductionpresentsaviableopportunitytousecleanhydrogen,itishinderedbyalowwillingnesstopayunlessproductionissupportedbycarbontaxationorgovernmentsubsidies.

6

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

Figure4.RoleofsubsidiesindeterminingfertilizercostsinIndia

Cost($pertonofnitrogen)

1,200

1,200

1,000

800

CostofureaSubsidyrange

800

750

600

400

400

250

200

0

0

ConventionalureaRenewablefertilizer(2030)Highmarketpriceurea(2022)

Fertilizertype

Source:NEDO2024.

Note:Thegreenbarsrepresentproductioncostsandtheyellowbarsindicatethesubsidyrangerequiredtobridgethegapbetweenmarketpriceand

subsidizedprice.Costsarenormalizedpermetrictonofnitrogentoenableafaircomparisonacrossdifferentfertilizertypes.Thefigureillustratesthecostofconventionalurea(withsubsidies),predictedcostsforrenewablefertilizersin2030,andthehighmarketpriceofureaobservedduringthe2022pricespikes.

Advancementsinsolarandelectrolysistechnologyareexpectedtolowerthecostofrenewableammonia,makingitaviable,competitiveoptioninagriculturebyreducingfer-tilizercost.However,carefulregulationisnecessarytoavoidexcessiveapplicationandtheassociatedenvironmentalrisks,suchasnitrogenoxidesemissions.Strategicgovern-mentpoliciescanhelpbalanceeconomicgainswithenvi-ronmentalprotection(Mülleretal.2023).

Whatisthestatusofcleanammoniaproduction?

Importantprojectsarealreadyoperational,andmanycasestudiesandpilotprojectshavebegun

Box1highlightsafewofthemostvisiblerenewableandlow-carbonammoniaprojectsinemergingmarketsanddevelopingeconomies.

RenewableammoniaproductionismakingsignificantprogressinIndia.Majorprojectsarespearheadingthegreentransitioninfertilizers.OneoftheflagshipprojectsisafacilitybeingdevelopedbyAMGreeninKakinada,AndhraPradesh,expectedtohaveaproductioncapacityof1MMT

ofrenewableammoniaannuallyandprojectedtobeginoperationsinthesecondhalfof2026.Thefinalinvestmentdecisionfortheproject,whichrepresentsamajormilestoneinIndia’sNationalGreenHydrogenMission,wasreachedinAugust2024.TheprojectwillleveragelocallyavailablerenewableenergysourcestohelpIndiaachievedecarbon-izationandrelylessonfossil-fuelbasedammoniaproduc-tion(NSEnergy2024).Theprojectwillprovidealow-carbonalternativetoconventional,carbon-intensiveammoniapro-ductionmethods.Itsrenewablehydrogenwillbeproducedusing640megawattsofadvancedpressurizedalkalineelectrolyzerscapableofproducinghydrogenfromsolarandwindenergy(suppliedtoAMGreenbyJohnCockerillundertheirpartnership).Thisrenewablehydrogenwillbesynthe-sizedintorenewableammonia,whichthefertilizerindustrycanutilizefurther.Thislarge-scaleprojectunderlinesIndia’scommitmenttosustainableagricultureandpositionsthecountryasaleaderinglobalprogresstowardnetzero(Bailey2024).

Chilehasinitiatedseveralrenewableenergyprojectsthatareadvancingtheproductionofrenewableammoniaforthefertilizerindustry.OneofthemostnotableistheHyEx

7

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

Box1.Selectedrenewableandlow-carbona

Globally,therearemanyrenewableandlow-carbonammuseoftheirproduct,butformany,fertilizersareanofftakeprojects.

TableB1.1Selectedrenewableandlow-carb

mmoniaprojects

oniaprojects.Mosthavenotannouncedtheintendedcase.TableB1.1offerskeystatisticsoffourvisible

onammoniaprojects

tablefor

ale

achedfinalinvestmentdecisiondisunderconstruction

ale

eadyoperational

Approximateammonia

capacity(millionmetric

tonsperyear)

9(Phase2oftheproject)

1

10

0.017

Projectname

Projectowners

No

AustralianRenewableEnergyHub

BP,InterContinentalEnergy,andCWPGlobal

Sc

Neom

AirProducts

Re

an

GreenEnergyOman

IntercontinentalEnergy,OU,EnerTech,Shell

Sc

Fertiberia

Fertiberia

Alr

Note:Foracomprehensivelistofrelevantprojects,seeArgusMedia(

https

:///nh3-2023.html).

Project,acollaborationbetweenEnaexandEngie.ThisprojectutilizessolarpowerfromnorthernChiletoproducerenewablehydrogen,whichisthensynthesizedintorenew-ableammonia.Therenewableammoniawillbeusedtopro-duceammoniumnitrate,avitalcomponentinfertilizersandexplosives,particularlyfortheminingsector(Rouwenhorst2023b).AnothersuchprojectistheHNHProjectintheMagallanesregion,involvingAustriaEnergy,?kowind,andCopenhagenInfrastructurePartners.Thatprojectisdesignedtoproduceapproximately1.35MMTofrenewableammoniaannuallyusing3.5gigawatts(GW)ofwindpowerand3GWofelectrolyzercapacity(CopenhagenInfrastructurePartners2024).Whileprimarilyfocusedonexports,thisrenewableammoniaalsohaspotentialapplicationsindecarbonizingglobalfertilizerproduction.

Morocco’sOCPGroup–ledTarfayaGreenAmmoniaProject,a$7billioninitiativeproducingrenewableammoniatosup-portsustainablefertilizerproduction,wasinthefront-endengineeringdesignphasewithWorleyasofAugust2024.TheprojectwillharnessMorocco’ssolarandwindresources

togenerate1MMTofrenewableammoniaannuallyby2027,withplanstoexpandto3MMTby2032(ESGNews2024).TheTarfayaproject,whichintegratesrenewableenergyintoammoniaproduction,alignswithMorocco’s2040carbonneutralitygoals.ItwillhelpMoroccorelylessonfossilfuelsandprovidealow-carboninputforthefertilizerindustry.

Brazil’sRiodeJaneiro–basedPortofA?uBlueAmmoniaProjectisadvancingtheproductionoflow-carbonammonia,withapplicationsinfertilizers.The$3billioninitiative,devel-opedincollaborationwithToyoEngineering,willusenaturalgaswithCCStoproduceanestimated1MMToflow-carbonammoniaannually,fordomesticuseaswellasforexport.Locatedneargaspipelinesandfertilizerdistributionroutes,theprojectbenefitsfromlogisticalefficiencyandsupportsBrazil’sagriculturalandindustrialsectors.Futureplansincludetransitioningtorenewableammoniaasrenewableenergysourcesbecomemoreviable(H2Bulletin2024).

Nigeria’sBrassFertilizerandPetrochemicalCompanyprojectinBayelsastateisamajorlow-carbonammoniainitiative

8

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

focusedonthefertilizerindustry.This$3.5billionfacility,developedinpartnershipwithShell,TotalEnergies,andEni,willreceive270millioncubicfeetofnaturalgasdailyandintegrateCCStechnologytoloweremissions.Theprojectisexpectedtoproduce1.66MMTofammoniaannually.ItaimstoreduceNigeria’sfertilizerimportsby30percent,savingapproximately$200millioninforeignexchangeeachyear.TheprojecttapsintoNigeria’s200trillioncubicfeetofgasreserves,advancingsustainablefertilizerproductionbyuti-lizingdomesticresourcesandadvancedCCS(Eboh2024).

ThesecasestudiesfromSouthAsia,LatinAmerica,andAfricaillustratethediverseapproachesandsignificantpotentialforrenewableandlow-carbonammoniaproductioninemerg-ingmarketsanddevelopingeconomies.Whilerenewableammoniaprojectsdemonstratethefeasibilityandsustain-abilityofutilizingrenewableresources,low-carbonammo-niaprojectsleverageexistingnaturalgasinfrastructure.

Arepolicyandregulatoryframeworksconducive?

Indevelopingcountries,policiessupportingtheuseofhydrogenandammoniainagriculturearegraduallyevolvingtoaddresstheneedforlow-carbonsolutions

Tofacilitatethetransitiontocleanhydrogen,policychangesmustfocusoncreatinganenablingenvironmentthatsup-portsinvestmentincleantechnologies.Governmentsshouldconsiderimplementingrobustcarbonpricingmechanismstomakerenewablehydrogenmorecompetitiverelativetoconventionalfossilfuels.Clearregulationsandstandardsfortheproductionanduseofcleanhydrogenwillhelpensureconsistencyandbuildinvestors’confidence.

“Tofacilitatethetransitiontoclean

hydrogen,policychangesmustfocuson

creatinganenablingenvironmentthat

supportsinvestmentincleantechnologies.”

India’sNationalHydrogenMission,launchedin2021,targetstheproductionof5MMTofrenewablehydrogenby2030;theaimistodecarbonizefertilizerandotherindustries.Similarly,Brazil’snationalhydrogenstrategyaimstofosteramarketforcleanhydrogenproduction,despiteeconomicconstraints.

Subsidiesandincentiveswillplayacriticalroleinloweringthefinancialbarrierstoadoptingcleanammonia.Today,conventionalfertilizersareheavilysubsidizedinmanycoun-tries.Forexample,India’sbudgetforfertilizersubsidieswas$25.5billionforthefiscalyear2023–24.Atransitiontocleanammoniaandhydrogen-basedfertilizerswillrequiresimilarorhigherlevelsofsubsidies.Thiscouldincludedirectsubsidiesforrenewablehydrogenproduction,taxincentivesforthepurchaseofhydrogenproductionequipment,andgrantsforresearchanddevelopmentprojects.

However,regulatoryhurdlessuchasbureaucraticdelaysandlackofinfrastructurewillhavetobeaddressed.Streamliningregulatoryprocessesanddevelopinginfrastructureforhydro-gendistributionandstoragearecriticalinsupportingthegrowthofacleanhydrogeneconomy.Further,internationalcooperationandfinancialaidfromdonorcountriescanhelpovercomechallenges.

Whatarethenextsteps?

Takeawaysandrecommendationsforgovernmentsandinternationaldonororganizationsmaybegroupedintofivecategories

√Addressthepricegapthroughofftakeagreements.

Thetransitiontocleanhydrogenandfertilizersrequiresmechanismstoaddressthepricedisparitybetweencon-ventionalfertilizersandcleanalternatives.Governmentsanddonororganizationsshouldfacilitatelong-termofftakeagreementsinwhichbuyerscommittopur-chasingcleanfertilizersatapredeterminedprice.Theseagreementsreducethefinancialriskforproducersandsignalmarketstability,therebyencouraginginvestmentincleanproductiontechnologies.

9

DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen

√Considerthecostoffinancingandaccesstocapital.Financingremainsasignificantbarriertotheadoptionofcleanfertilizers.Dedicatedgreenfinanceinstruments,suchaslow-interestloansorgreenbonds,canalleviatetheup-frontcapitalcostsforproducersanddistributors.Internationalfinan

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論