




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
DisclosureAuthorized
FEBRUARY20252025/140
ENERGY&EXTRACTIVESGLOBALPRACTICE
AKNOWLEDGENOTESERIESFORTHE
Public
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
Thebottomline.Syntheticfertilizersareessentialtosustainingtheworld’spopulation,buttheirproductionisresponsiblefor1.8–2.4percentofglobalgreenhousegasemissions.Cleanhydrogenholdsgrowingpotential(amidfallingcosts)todecarbonizefertilizerproduction.Hydrogenisusedtoproducesyntheticammonia,abuildingblockofmostfertilizers.Withthefertilizermarketas
areliableofftaker,thisshiftcouldsupporttheexpansionofcleanhydrogenoverallevenasitboostsglobalfoodsecurity.Butthistransitionmayrequireadjustments,includingchangesin
AuthorshipPublicDisclosurePublicDisclosureAuthorized
fertilizertypes,andmodificationstoexistingsubsidyschemes.
Theproductionoffertilizeringredientssuchasurea,ammo-niumnitrates,andammoniumphosphatesrequiresammo-nia,over85percentofwhoseproductionisspecificallyforfertilizers.Fertilizerproductioncanthusbemadegreenerbydecarbonizingammoniasynthesisusingcleanhydrogen.
Cleanhydrogencanbegeneratedusingrenewablepowerorproducedfromso-calledlow-carbonhydrogen,whichitselfisproducedfromfossilfuelscombinedwithcarboncaptureandstorage(CCS).Beyondshrinkingthecarbonfootprintoffertilizerproduction,cleanhydrogencandriveinnovationandeconomicgrowth,createmarketopportunities,andmaketheagriculturalsupplychainmoreresilient.
Renewablehydrogenisproducedusingrenewableelec-tricitysourceslikesolarandwind(seeexamplesinfigure1).Thishydrogenisthencombinedwithnitrogen,obtainedfromanelectricallypoweredairseparationprocess,tosyn-thesizeammoniausingtheHaber-Boschprocess.AmmoniaproductioninmostHaber-BoschplantsreleasessignificantGHGemissionssincenaturalgasisusedasafeedstockto
Whatisthebestwaytodecarbonizefertilizerproduction?
Byreplacingfossilfuelswithcleansourcesofhydrogeninthesynthesisofammonia
Thefertilizerindustryplaysacrucialroleinglobalagriculture,ensuringfoodsecurityforbillionsbyenhancingcropyieldsandsoilfertility.However,traditionalfertilizerproductionisenergy-intensiveandreliesonfossilfuels,particularlynaturalgas,leadingtosubstantialgreenhousegasemissions.Byreplacingfossilfuelswithcleanhydrogensources,thecar-bonintensityoffertilizerproductioncanbereduced,therebyadvancingglobalclimatechangegoals,suchasthosesetbytheParisAgreement,aimingtolimitglobalwarmingtowellbelow2°C.
ThisLiveWirewaspreparedbytheEnergySector
ManagementAssistanceProgramattheWorldBankin
supportoftheHydrogenforDevelopmentPartnership.H4Dconsistsofnearly50partnerorganizationsaroundthe
world.Itassistscountriesthathaveincludedlow-emissionshydrogenintheirlong-termdecarbonizationstrategies.
PreparationoftheLiveWirewascoordinatedbyRafaelBen,anenergyspecialistatESMAP,andDolfGielen,ESMAP’s
hydrogenlead.
2DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
Figure1.Basicconceptsunderlyingrenewableammoniaproduction
Batteries
Hydrogenstorage
Material?owPower?ow
WaterOxygen
SolarPV
Ammonia
Hydrogen
HaberBosch
synthesis
Electrolyzer
Wind
Airseparationunit
AirOxygen
Note:Energystorageandbackuppowerareshowninred.Thesearerequiredintheabsenceofagridconnectionoraccesstoso-calledbaseloadrenewables—consistent,reliableenergysourceslikegeothermalorhydropowerthatprovideacontinuoussupplyofelectricity.PV=photovoltaic.
kindisapromisingsteptowardintegratingammoniasyn-thesiswithvariablerenewableenergysources(Boyles2023;Rouwenhorst2023a).
Renewableammoniaproductionthereforerequires:
√Astablerenewablepowersourcesuchashydro,oracombinationofvariablerenewablesources,suchassolarandwind;
√Aconnectiontoalow-carbonelectricitygrid,althoughthismaynotbepracticalduringperiodsofpeakdemand;
or
producehydrogen.Partsoftheproductionprocessaredrivenwithsteamproducedasaby-productoftheexothermic(heat-releasing)ammoniasynthesisreaction.Butrenewableammoniaplantswillrelyminimallyonfossilfuelsandemitsignificantlylessbecauserenewablehydrogenwillreplacehydrogenderivedfromnaturalgasreforming.Also,renew-ables-basedelectricitywillreplacesteam,eventhoughitwillstillbeproducedintheammoniasynthesisreaction(MacFarlaneetal.2020).
√On-siteenergystorage,fromhydrogenstorageorpipe-
linedeliveryofhydrogen,oracombinationofthetwo.
Theserequirementscoulddriveupcosts,giventhehighcostsofstablerenewablesandhydrogenstorage.Butpartialflex-ibilityisasignificanttechnologicaladvance,thealternativebeingtoprovideafixed,constantflowofhydrogenatveryhighcosts,asinthesteelindustry(Aagaardetal.2023).
AmajorchallengeinrenewableammoniaproductionistheflexibilityoftheHaber-Boschprocesstomatchthevariabil-ityofrenewableenergysources.Ideally,plants’operationwouldbefullydynamic,matchingfluctuationsinresourcevariabilitythroughreal-timeadjustments.Butsuchfullflex-ibilityisgenerallynotfeasibleduetothehightemperaturesandpressuresinvolved.Nevertheless,recentefforts,particu-larlybyDanishresearchersandcompanies,areshowcasingadvancementsinthisarea.Forexample,partialflexibilityallowsplantstooperateatafractionoftheirdesignrate.Thedegreeofflexibilitypossiblevariesdependingontheequipmentdesignandmanufacturer.Aninnovationofthis
3
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
carboncaptureefficiency.Approximatelytwo-thirdsofcarbonemissionscanbecapturedrelativelyeasilyinSMR,buttheremainingthirdismorechallengingandcostlytocapture.Bycontrast,upto99percentofemissionscanbecapturedinATR,whichispotentiallymoreeconomicalandenvironmentallyfriendlyforlow-carbonhydrogenproduc-tion(SalmonandBa?ares-Alcántara2021aand2021b).
ThehighercapturerateinATRisachievablebecausepartialoxidationandsteamreformingareintegrated,and,thus,externalheating,whichproduceslow-concentrationfluegases,asinSMR,isnotneeded.ButATRusesmoreenergythanSMR,eventhoughitofferseaseofcaptureandhasaddedoperationalflexibilitysinceawiderrangeofhydrocar-bonfeedstockscanbeused.TheseadvantagesmakeATRapromisingalternativetoSMRforlow-carbonhydrogenandammoniaproduction.Theprocessoflow-carbonammoniaproductionissummarizedinfigure2.
Uncertaintyaroundequipmentcosts,especiallyfornewtech-nologieslikeelectrolyzers,makesithardtopredictthecostsofrenewableammonia.Currentestimatesare$794–$1,543perton—significantlyhigherthanthecostofgreyammonia,$121–$518perton,dependingonnaturalgasprices(Boyles2023;Aagaardandothers2023).Effortsarebeingmadetoreducecoststhroughgovernmentsubsidiesandimprovedproductiontechnologies,withexpectationsofasignificantcostdeclineby2050(Fasihiandothers2020),supportedbythefallingcostsofrenewablehydrogen.Movingtowardrenewableammoniacanpreventassetsfrombecomingstranded;itisalsoausefuloptionforshort-termemissionreductionsandfordevelopingoperatorskillsandpractices.
Forlow-carbonammonia,hydrogenisstillproducedmostcommonlyfromnaturalgasviasteammethanereforming(SMR)withCCS.However,aneweralternativeprocess,auto-thermalreforming(ATR),couldmakelow-carbonhydrogen,andthuslow-carbonammonia,lesscostlybyimproving
Figure2.Low-carbonammoniaproductionusingautothermalreforming
Air
separation
unit
Note:Dependingonthelevelofheatintegration,thepreheatermaynotberequired.CO2=carbondioxide.
CO2
transport
compression
andstorage
Autothermal reformerandwater gasshift
Ammonia
HaberBosch
Hydrogenseparation
Preheater
Hydrogen
Material?ow
Power?owHeat?ow
CO2airmixture
CO2
Naturalgas
synthesis
Nitrogen
Oxygen
AirPower
4
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
ATRpartiallyoxidizesthenaturalgasfeed.Thispartialoxi-dationmeansthattheheatrequirementfornaturalgascrackingismostlydeliveredinsidethereactor,andonlyasmallamountofnaturalgascombustionisrequiredoutsideittoproducelow-carbonhydrogen.Deliveringheatinsidethereactorinacontrolledenvironmentensuresthatthewastestreamisnearlypurecarbondioxide(CO2),whichthenbecomeseasier(andcheaper)tosequesterbecausenoseparationisneeded.Forammoniaproduction,integratingheatwiththeenergyproducedbytheHaber-Boschsynthe-sisreactorcouldfurtherreduceoreveneliminatethenaturalgascombustionrequiredbythepreheater(whichproducesCO2thatisconsiderablymoredifficulttosequester).
ThecaptureofconcentratedCO2streamsisalreadyquitecommonintheammoniaindustry,regardlessofthehydro-genproductionprocess,SMRorATR.Butthiscannotbeconsideredacarbonabatementapproach,sincethecarbonreactswithammoniatoproduceureaforagriculturaluse,andthecarbonintheureawillbequicklyreleasedintotheatmosphere.1
“High-qualityrenewableenergyenables
lower-costammoniaproductionbyloweringelectricitycosts.”
Becauseusingureaemitscarbon,agriculturewillneedhelpswitchingfromurea,whichissimpletoapply,becauseitissolid,tootherlow-orno-carbonfertilizersthatcanbepro-ducedfromammoniaalone,oftenintheformofammoniumnitrate,orwithotherinputs,suchasammoniumphosphatesorcalciumammoniumnitrates.Someofthesefertilizers
1Trueabatementwouldrequirethecapturedcarbontobestoredeither
geologicallyorinamineraldepositwhereitcannotentertheatmosphericcarboncycleintheshortterm.Alternatively,thecarbonforureacouldbe
extractedfromtheatmosphereorfrombiomass(agriculturalresidues,for-estryby-products,dedicatedenergy,organicwastematerials),butthecostsofextractingitfromtheatmospherearemuchtoohigh.Directaircaptureandbiomasswithcarboncaptureandstorage,respectively,cost$125–$335and$40–$120pertonofCO2(IEA2020).Moreover,theavailabilityofbio-massismuchtoolowgiventheglobalscaleoffertilizerproduction.
mustbeappliedasaliquid,whichcanbemorecostlyandtime-consumingtouse(Vogl,?hman,andNilsson2018).Thetransitionwillrequireadjustingsubsidyregimestosupportotherformsoffertilizers(Oniandothers2022).
Whatroledosubsidiesplayinfertilizer
markets—andhowisthatlikelytochange?
Subsidiesinteractwithnaturalgaspricesandotherfactorstoshapeprices,supplychains,andchoicesoffertilizers
About200millionmetrictons(MMT)ofammoniaarepro-ducedgloballyperyear,ofwhich170–180MMTgointoagriculturalfertilizers.Theremaining20MMPareusedinvariousindustrialapplications,includingtheproductionofexplosives,plastics,andotherchemicals.Everyyear,about20MMTofammoniaareshippedglobally.Transportingammoniaisfeasibleaswellascost-effective—andimportanttosustainitsglobalsupplychain—giventhesimilarityofitspropertieswithliquifiedpetroleumgas.
Fertilizertypesvarybyregion.DirectapplicationofammoniaiscommonintheUnitedStates,ureaiscommoninIndia,andnitrateispredominantinEurope.Whilerenewablehydrogenwillmaketheproductionofrenewableammoniaaffordableinthemediumtolongterm,producingderivativeslikeurearemainsachallenge.
Asnotedearlier,thepricesofnaturalgas—afeedstockandenergysourceintheHaber-Boschprocess—primarilydrivethecostofammoniaproduction.Thehighnaturalgaspricesduringthewinterof2022/23ledtothetemporaryclosureofseveralEuropeanammoniaproductionfacilities(Unkovichandothers2020)(figure3).Pricevolatilitystronglyinfluencestheeconomicsofammoniaproduction,particularlyforlow-carbonammoniaprojects.Giventhesecostdynamics,themostadvancedlow-carbonammoniaprojectsarecon-centratedinregionswherenaturalgasisaffordable,suchastheGulfCoastoftheUnitedStates.
Thequalityofrenewableenergysourcesheavilyinfluencesthecostofrenewableammonia.High-qualityrenewableenergyenableslower-costammoniaproductionbylow-eringelectricitycosts.Consistentpowerproduction,oftenachievedbycombiningwindandsolarresources,minimizes
5
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
Figure3.Fertilizerpricesovertime,showingaspikecoincidentwithhighnaturalgasprices
$permetricton
800
DAP
Urea
MOP
600
400
200
20162017201820192020202120222023
0
Source:Bloomberg;WorldBank.
Note:LastobservationisDecember2022.
DAP=diammoniumphosphate;MOP=muriateofpotash.
Figure4showsthecoststructurefordifferenttypesoffertiliz-ers,usingIndiaasanexample.Thegreenbarsrepresenttheproductioncostoffertilizers;theyellowbarsrepresenttheestimatedsubsidytomakefertilizersaffordableforfarmers.Conventionalureabenefitsfromheavygovernmentsubsi-dies,whichsignificantlyreduceitscostsforfarmers.Incon-trast,thepredictedcostsforrenewableammoniain2030arehigherthanthelowest-costconventionalurea(butlowerthanthehighmarketpricesobservedduringpricespikesin2022).Thishighlightsthepotentialforrenewableammoniatoprovidepricestabilityandprotectionagainstmarketvol-atility,thoughitwillstillrequiresubsidiestocompetewithconventionalurea.
ThefigurehighlightsthesignificantroleofsubsidiesindeterminingfertilizeraffordabilityinIndia.Whilerenewableammoniawilllikelyrequire$500$1,200insubsidiespermetrictontocompetewithconventionalureain2030,itisprojectedtoofferpricestability.However,widespreadadop-tionofrenewablefertilizersmayneedadditionalincentivesandpolicymeasuressuchassupportforswitchingfromureatoalternativefertilizers.Thesemeasuresarenotconsideredinthecurrentanalysis.
theneedforseasonalenergystorage.Fertilizerproductioncostsarethereforelowestincountrieswithfavorablerenew-ableenergyprofiles,makingthemidealasfertilizerexport-ers.Developingcountrieswithlimitedaccesstofertilizersthushaveasignificantopportunitytonotonlyproduceandconsumefertilizerslocallybutalsoexporttheexcess.Forinstance,fertilizerconsumptioninKenyaisonlyathirdoftheglobalaverageperhectare,butthecountryhasapromisingprofilefortherenewableproductionoffertilizer.RenewableammoniaproductioninKenyaandothersimilareconomiesthereforeoffersopportunitiesforboththedomesticandexportmarkets(Nayak-Lukeandothers2022).
Althoughammoniasprimaryusehashistoricallybeenasfer-tilizer,itsroleislikelytochangeinadecarbonizedeconomy,forexample,asamarinefuel,along-termenergystoragemedium,orahydrogencarrier.Thispotentialforsectorcouplingmaycreatecost-savingefficienciesbutmayalsointroducecompetitionthatcoulddriveuppricesinsomeindustries(Terazono,Pickard,andEvans2022).
Whileswitchingtozero-carbonfertilizerproductionpresentsaviableopportunitytousecleanhydrogen,itishinderedbyalowwillingnesstopayunlessproductionissupportedbycarbontaxationorgovernmentsubsidies.
6
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
Figure4.RoleofsubsidiesindeterminingfertilizercostsinIndia
Cost($pertonofnitrogen)
1,200
1,200
1,000
800
CostofureaSubsidyrange
800
750
600
400
400
250
200
0
0
ConventionalureaRenewablefertilizer(2030)Highmarketpriceurea(2022)
Fertilizertype
Source:NEDO2024.
Note:Thegreenbarsrepresentproductioncostsandtheyellowbarsindicatethesubsidyrangerequiredtobridgethegapbetweenmarketpriceand
subsidizedprice.Costsarenormalizedpermetrictonofnitrogentoenableafaircomparisonacrossdifferentfertilizertypes.Thefigureillustratesthecostofconventionalurea(withsubsidies),predictedcostsforrenewablefertilizersin2030,andthehighmarketpriceofureaobservedduringthe2022pricespikes.
Advancementsinsolarandelectrolysistechnologyareexpectedtolowerthecostofrenewableammonia,makingitaviable,competitiveoptioninagriculturebyreducingfer-tilizercost.However,carefulregulationisnecessarytoavoidexcessiveapplicationandtheassociatedenvironmentalrisks,suchasnitrogenoxidesemissions.Strategicgovern-mentpoliciescanhelpbalanceeconomicgainswithenvi-ronmentalprotection(Mülleretal.2023).
Whatisthestatusofcleanammoniaproduction?
Importantprojectsarealreadyoperational,andmanycasestudiesandpilotprojectshavebegun
Box1highlightsafewofthemostvisiblerenewableandlow-carbonammoniaprojectsinemergingmarketsanddevelopingeconomies.
RenewableammoniaproductionismakingsignificantprogressinIndia.Majorprojectsarespearheadingthegreentransitioninfertilizers.OneoftheflagshipprojectsisafacilitybeingdevelopedbyAMGreeninKakinada,AndhraPradesh,expectedtohaveaproductioncapacityof1MMT
ofrenewableammoniaannuallyandprojectedtobeginoperationsinthesecondhalfof2026.Thefinalinvestmentdecisionfortheproject,whichrepresentsamajormilestoneinIndia’sNationalGreenHydrogenMission,wasreachedinAugust2024.TheprojectwillleveragelocallyavailablerenewableenergysourcestohelpIndiaachievedecarbon-izationandrelylessonfossil-fuelbasedammoniaproduc-tion(NSEnergy2024).Theprojectwillprovidealow-carbonalternativetoconventional,carbon-intensiveammoniapro-ductionmethods.Itsrenewablehydrogenwillbeproducedusing640megawattsofadvancedpressurizedalkalineelectrolyzerscapableofproducinghydrogenfromsolarandwindenergy(suppliedtoAMGreenbyJohnCockerillundertheirpartnership).Thisrenewablehydrogenwillbesynthe-sizedintorenewableammonia,whichthefertilizerindustrycanutilizefurther.Thislarge-scaleprojectunderlinesIndia’scommitmenttosustainableagricultureandpositionsthecountryasaleaderinglobalprogresstowardnetzero(Bailey2024).
Chilehasinitiatedseveralrenewableenergyprojectsthatareadvancingtheproductionofrenewableammoniaforthefertilizerindustry.OneofthemostnotableistheHyEx
7
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
Box1.Selectedrenewableandlow-carbona
Globally,therearemanyrenewableandlow-carbonammuseoftheirproduct,butformany,fertilizersareanofftakeprojects.
TableB1.1Selectedrenewableandlow-carb
mmoniaprojects
oniaprojects.Mosthavenotannouncedtheintendedcase.TableB1.1offerskeystatisticsoffourvisible
onammoniaprojects
tablefor
ale
achedfinalinvestmentdecisiondisunderconstruction
ale
eadyoperational
Approximateammonia
capacity(millionmetric
tonsperyear)
9(Phase2oftheproject)
1
10
0.017
Projectname
Projectowners
No
AustralianRenewableEnergyHub
BP,InterContinentalEnergy,andCWPGlobal
Sc
Neom
AirProducts
Re
an
GreenEnergyOman
IntercontinentalEnergy,OU,EnerTech,Shell
Sc
Fertiberia
Fertiberia
Alr
Note:Foracomprehensivelistofrelevantprojects,seeArgusMedia(
https
:///nh3-2023.html).
Project,acollaborationbetweenEnaexandEngie.ThisprojectutilizessolarpowerfromnorthernChiletoproducerenewablehydrogen,whichisthensynthesizedintorenew-ableammonia.Therenewableammoniawillbeusedtopro-duceammoniumnitrate,avitalcomponentinfertilizersandexplosives,particularlyfortheminingsector(Rouwenhorst2023b).AnothersuchprojectistheHNHProjectintheMagallanesregion,involvingAustriaEnergy,?kowind,andCopenhagenInfrastructurePartners.Thatprojectisdesignedtoproduceapproximately1.35MMTofrenewableammoniaannuallyusing3.5gigawatts(GW)ofwindpowerand3GWofelectrolyzercapacity(CopenhagenInfrastructurePartners2024).Whileprimarilyfocusedonexports,thisrenewableammoniaalsohaspotentialapplicationsindecarbonizingglobalfertilizerproduction.
Morocco’sOCPGroup–ledTarfayaGreenAmmoniaProject,a$7billioninitiativeproducingrenewableammoniatosup-portsustainablefertilizerproduction,wasinthefront-endengineeringdesignphasewithWorleyasofAugust2024.TheprojectwillharnessMorocco’ssolarandwindresources
togenerate1MMTofrenewableammoniaannuallyby2027,withplanstoexpandto3MMTby2032(ESGNews2024).TheTarfayaproject,whichintegratesrenewableenergyintoammoniaproduction,alignswithMorocco’s2040carbonneutralitygoals.ItwillhelpMoroccorelylessonfossilfuelsandprovidealow-carboninputforthefertilizerindustry.
Brazil’sRiodeJaneiro–basedPortofA?uBlueAmmoniaProjectisadvancingtheproductionoflow-carbonammonia,withapplicationsinfertilizers.The$3billioninitiative,devel-opedincollaborationwithToyoEngineering,willusenaturalgaswithCCStoproduceanestimated1MMToflow-carbonammoniaannually,fordomesticuseaswellasforexport.Locatedneargaspipelinesandfertilizerdistributionroutes,theprojectbenefitsfromlogisticalefficiencyandsupportsBrazil’sagriculturalandindustrialsectors.Futureplansincludetransitioningtorenewableammoniaasrenewableenergysourcesbecomemoreviable(H2Bulletin2024).
Nigeria’sBrassFertilizerandPetrochemicalCompanyprojectinBayelsastateisamajorlow-carbonammoniainitiative
8
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
focusedonthefertilizerindustry.This$3.5billionfacility,developedinpartnershipwithShell,TotalEnergies,andEni,willreceive270millioncubicfeetofnaturalgasdailyandintegrateCCStechnologytoloweremissions.Theprojectisexpectedtoproduce1.66MMTofammoniaannually.ItaimstoreduceNigeria’sfertilizerimportsby30percent,savingapproximately$200millioninforeignexchangeeachyear.TheprojecttapsintoNigeria’s200trillioncubicfeetofgasreserves,advancingsustainablefertilizerproductionbyuti-lizingdomesticresourcesandadvancedCCS(Eboh2024).
ThesecasestudiesfromSouthAsia,LatinAmerica,andAfricaillustratethediverseapproachesandsignificantpotentialforrenewableandlow-carbonammoniaproductioninemerg-ingmarketsanddevelopingeconomies.Whilerenewableammoniaprojectsdemonstratethefeasibilityandsustain-abilityofutilizingrenewableresources,low-carbonammo-niaprojectsleverageexistingnaturalgasinfrastructure.
Arepolicyandregulatoryframeworksconducive?
Indevelopingcountries,policiessupportingtheuseofhydrogenandammoniainagriculturearegraduallyevolvingtoaddresstheneedforlow-carbonsolutions
Tofacilitatethetransitiontocleanhydrogen,policychangesmustfocusoncreatinganenablingenvironmentthatsup-portsinvestmentincleantechnologies.Governmentsshouldconsiderimplementingrobustcarbonpricingmechanismstomakerenewablehydrogenmorecompetitiverelativetoconventionalfossilfuels.Clearregulationsandstandardsfortheproductionanduseofcleanhydrogenwillhelpensureconsistencyandbuildinvestors’confidence.
“Tofacilitatethetransitiontoclean
hydrogen,policychangesmustfocuson
creatinganenablingenvironmentthat
supportsinvestmentincleantechnologies.”
India’sNationalHydrogenMission,launchedin2021,targetstheproductionof5MMTofrenewablehydrogenby2030;theaimistodecarbonizefertilizerandotherindustries.Similarly,Brazil’snationalhydrogenstrategyaimstofosteramarketforcleanhydrogenproduction,despiteeconomicconstraints.
Subsidiesandincentiveswillplayacriticalroleinloweringthefinancialbarrierstoadoptingcleanammonia.Today,conventionalfertilizersareheavilysubsidizedinmanycoun-tries.Forexample,India’sbudgetforfertilizersubsidieswas$25.5billionforthefiscalyear2023–24.Atransitiontocleanammoniaandhydrogen-basedfertilizerswillrequiresimilarorhigherlevelsofsubsidies.Thiscouldincludedirectsubsidiesforrenewablehydrogenproduction,taxincentivesforthepurchaseofhydrogenproductionequipment,andgrantsforresearchanddevelopmentprojects.
However,regulatoryhurdlessuchasbureaucraticdelaysandlackofinfrastructurewillhavetobeaddressed.Streamliningregulatoryprocessesanddevelopinginfrastructureforhydro-gendistributionandstoragearecriticalinsupportingthegrowthofacleanhydrogeneconomy.Further,internationalcooperationandfinancialaidfromdonorcountriescanhelpovercomechallenges.
Whatarethenextsteps?
Takeawaysandrecommendationsforgovernmentsandinternationaldonororganizationsmaybegroupedintofivecategories
√Addressthepricegapthroughofftakeagreements.
Thetransitiontocleanhydrogenandfertilizersrequiresmechanismstoaddressthepricedisparitybetweencon-ventionalfertilizersandcleanalternatives.Governmentsanddonororganizationsshouldfacilitatelong-termofftakeagreementsinwhichbuyerscommittopur-chasingcleanfertilizersatapredeterminedprice.Theseagreementsreducethefinancialriskforproducersandsignalmarketstability,therebyencouraginginvestmentincleanproductiontechnologies.
9
DecarbonizingAmmoniaandNitrogenFertilizerswithCleanHydrogen
√Considerthecostoffinancingandaccesstocapital.Financingremainsasignificantbarriertotheadoptionofcleanfertilizers.Dedicatedgreenfinanceinstruments,suchaslow-interestloansorgreenbonds,canalleviatetheup-frontcapitalcostsforproducersanddistributors.Internationalfinan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建事業(yè)單位考試資金應用試題及答案
- 農業(yè)職業(yè)經理人考試各階段的備考方法試題及答案
- 高二會考生物試題及答案
- 2024園藝師考試的趨勢分析試題及答案
- 2024年農業(yè)職業(yè)經理人考試社會媒體運用與試題答案
- 福建事業(yè)單位考試策略與應對試題及答案
- 保安轉包協(xié)議合同樣本
- 企業(yè)勞動節(jié)合同標準文本
- 2025年西雙版納職業(yè)技術學院單招職業(yè)傾向性考試題庫及參考答案1套
- 軍體課考試題目及答案
- 院內突發(fā)心跳呼吸驟停、昏迷、跌倒事件應急預案及程序
- 北京聯(lián)合大學2021年招聘輔導員試題及答案
- 九年級語文上冊 第三單元 寄情山水名勝 11 醉翁亭記教案 新人教版
- 2024年拍賣師資格考試題庫大全(含答案)
- 【正版授權】 ISO 21940-11:2016/Amd 1:2022 EN Mechanical vibration - Rotor balancing - Part 11: Procedures and tolerances for rotors with rigid behaviour - Amendment 1
- DL-T-1798-2018換流變壓器交接及預防性試驗規(guī)程
- 抖音火花合同電子版獲取教程
- 病毒性腦膜炎護理
- 高中名著導讀社團課《紅與黑》 課件
- 信陽職業(yè)技術學院單招《職業(yè)技能測試》參考試題庫(含答案)
- 國旗護衛(wèi)工作總結
評論
0/150
提交評論