2025屆山西省呂梁學(xué)院附中高考數(shù)學(xué)試題全真模擬密押卷(八)含解析_第1頁
2025屆山西省呂梁學(xué)院附中高考數(shù)學(xué)試題全真模擬密押卷(八)含解析_第2頁
2025屆山西省呂梁學(xué)院附中高考數(shù)學(xué)試題全真模擬密押卷(八)含解析_第3頁
2025屆山西省呂梁學(xué)院附中高考數(shù)學(xué)試題全真模擬密押卷(八)含解析_第4頁
2025屆山西省呂梁學(xué)院附中高考數(shù)學(xué)試題全真模擬密押卷(八)含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山西省呂梁學(xué)院附中高考數(shù)學(xué)試題全真模擬密押卷(八)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)有兩個不同的極值點(diǎn),,若不等式有解,則的取值范圍是()A. B.C. D.2.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.3.已知六棱錐各頂點(diǎn)都在同一個球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.4.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形5.已知,,若,則向量在向量方向的投影為()A. B. C. D.6.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項(xiàng)和,則()A. B. C. D.7.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.8.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,則()A. B. C. D.9.在平面直角坐標(biāo)系中,經(jīng)過點(diǎn),漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.10.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.11.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件12.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.14.在的展開式中,所有的奇數(shù)次冪項(xiàng)的系數(shù)和為-64,則實(shí)數(shù)的值為__________.15.內(nèi)角,,的對邊分別為,,,若,則__________.16.某城市為了解該市甲、乙兩個旅游景點(diǎn)的游客數(shù)量情況,隨機(jī)抽取了這兩個景點(diǎn)20天的游客人數(shù),得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數(shù)在內(nèi)時,甲景點(diǎn)比乙景點(diǎn)多______天.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.18.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.19.(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)20.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點(diǎn),且.求直線的方程.21.(12分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)請估計A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對哪一套設(shè)備加大生產(chǎn)規(guī)模?22.(10分)已知圓O經(jīng)過橢圓C:的兩個焦點(diǎn)以及兩個頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

先求導(dǎo)得(),由于函數(shù)有兩個不同的極值點(diǎn),,轉(zhuǎn)化為方程有兩個不相等的正實(shí)數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導(dǎo)數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因?yàn)楹瘮?shù)有兩個不同的極值點(diǎn),,所以方程有兩個不相等的正實(shí)數(shù)根,于是有解得.若不等式有解,所以因?yàn)?設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運(yùn)用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.2.D【解析】

確定點(diǎn)為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)椋诼?lián)立方程①②可得,,,因?yàn)椋?,即.故選:本題考查了向量模長的計算,意在考查學(xué)生的計算能力.3.D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.4.C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因?yàn)樗运运运运援?dāng)時,為直角三角形;當(dāng)時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.5.B【解析】

由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.本題考查向量投影的幾何意義,屬于基礎(chǔ)題6.B【解析】

利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項(xiàng)和公式得【詳解】解:因?yàn)?,由等差?shù)列性質(zhì),若,則得,.為數(shù)列的前項(xiàng)和,則.故選:.本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項(xiàng)和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項(xiàng)和公式的靈活應(yīng)用,如.7.D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點(diǎn):本題主要考查三視圖及幾何體體積的計算.8.B【解析】

設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.9.B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.10.B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.11.D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.12.B【解析】

設(shè),則,,因?yàn)椋裕?,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

根據(jù)程序框圖直接計算得到答案.【詳解】程序在運(yùn)行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.本題考查了程序框圖,意在考查學(xué)生的計算能力和理解能力.14.3或-1【解析】

設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.本題考查了二項(xiàng)式定理的應(yīng)用,考查了運(yùn)算能力,屬于中檔題.15.【解析】∵,∴,即,∴,∴.16.72【解析】

根據(jù)給定的莖葉圖,得到游客人數(shù)在內(nèi)時,甲景點(diǎn)共有7天,乙景點(diǎn)共有3天,進(jìn)而求得全年中,甲景點(diǎn)比乙景點(diǎn)多的天數(shù),得到答案.【詳解】由題意,根據(jù)給定的莖葉圖可得,在隨機(jī)抽取了這兩個景點(diǎn)20天的游客人數(shù)中,游客人數(shù)在內(nèi)時,甲景點(diǎn)共有7天,乙景點(diǎn)共有3天,所以在全年)中,游客人數(shù)在內(nèi)時,甲景點(diǎn)比乙景點(diǎn)多天.故答案為:.本題主要考查了莖葉圖的應(yīng)用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

運(yùn)用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運(yùn)用累加法得出結(jié)果運(yùn)用放縮法和累加法進(jìn)行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當(dāng)時,成立;②當(dāng)時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故本題考查了數(shù)列的綜合,運(yùn)用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進(jìn)行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進(jìn)行證明,本題較為困難。18.(1)3360元;(2)見解析【解析】

(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機(jī)抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望計算問題,屬于中檔題.19.(1)證明見解析;(2).【解析】

(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后討論當(dāng)時的函數(shù)單調(diào)情況:當(dāng)時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號,即可確定整數(shù)的最大值;當(dāng)時不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時無需再討論.【詳解】(1)證明:當(dāng)時代入可得,令,,則,令解得,當(dāng)時,所以在單調(diào)遞增,當(dāng)時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當(dāng)時,,則在時單調(diào)遞減,所以,即當(dāng)時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當(dāng)時,即在內(nèi)單調(diào)遞減,當(dāng)時,即在內(nèi)單調(diào)遞增,所以當(dāng)時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當(dāng)時,在時,此時,與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時無需再討論,綜上所述,當(dāng)時,整數(shù)的最大值為.本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強(qiáng),屬于難題.20.(1)見解析(2)【解析】

(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.本題考查參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程之間的互化,考查直線被圓截得的弦長公式的應(yīng)用,考查分析能力與計算能力,屬于基礎(chǔ)題.21.(1)30.2,29;(2)B設(shè)備【解析】

(1)平均數(shù)的估計值為組中值與頻率乘積的和;(2)要注意指標(biāo)值落在內(nèi)的產(chǎn)品才視為合格品,列出A、B設(shè)備利潤分布列,算出期望即可作出決策.【詳解】(1)A設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標(biāo)值頻數(shù)41640121810.根據(jù)樣本質(zhì)量指標(biāo)平均值估計A設(shè)備生產(chǎn)一件產(chǎn)品質(zhì)量指標(biāo)平均值為30.2.B設(shè)備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標(biāo)值頻數(shù)2184814162根據(jù)樣本質(zhì)量指標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論